Name: \qquad

Math 235-Calculus III - Spring 2012

Exam 1

Instructions: Show all your work to receive full credit. Books and notes are not allowed.

1. (10 points) Find all the t-values where the parametric curve has a horizontal tangent and all the t-values where the parametric curve has a vertical tangent.

$$
x(t)=2 \sin t \quad y(t)=4 \cos (t)
$$

2. (5 points) Which of the following is the equation of $r=\frac{6}{3 \cos \theta+2 \sin \theta}$ expressed in rectangular coordinates
(a) $y=\frac{6}{3 x+2 y}$
(b) $\sqrt{x^{2}+y^{2}}=\frac{6}{3 x+2 y}$
(c) $y=3-1.5 x$
(d) $y^{2}=\frac{36}{3 x+2 y}-x^{2}$
3. (10 points) Find the area inside the cardioid $r=1+\cos \theta$ and outside the circle $r=\cos \theta$
4. (7 points) Write down but do not integrate an expression for the arc length of the polar curve $r=\sqrt{\theta}$ over the interval from 0 to $\pi / 2$.
5. (10 points) Find the equation of the ellipse that has foci at $(-1,1)$ and $(-1,3)$ and minor axis of length 4.
6. (8 points each) Given the vector $\mathbf{v}=\langle 2,6,2\rangle$ and the vector $\mathbf{u}=<1,1,2\rangle$, compute the following (a) $\mathbf{u} \cdot \mathbf{v}$. What does this tell you about the angle between uand \mathbf{v} ?
(b) $\mathbf{u} \times \mathbf{v}$
(c) $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$
7. (10 points) Find the point of intersection of the line and plane.

$$
\begin{gathered}
x=1+t \quad y=-1+3 t \quad z=2+4 t \\
x-y+4 z=7
\end{gathered}
$$

8. (10 points) Find the equation of the plane that contains the point $((2,0,3)$ and the line $x=-1+t \quad y=t \quad z=-4+2 t$
9. (10 points) Draw a picture that illustrates where the conversions from spherical coordinates to cylindrical coordinates come from.
