Name: $\qquad$

## Math 235-Calculus III - Spring 2012

## Exam 2

Instructions: Show all your work to receive full credit. Books and notes are not allowed.

1. (10 points) Sketch the graph of $\mathbf{r}(t) \quad=\quad t \mathbf{i}+(2-\quad t / 2) \mathbf{j}$

2. (12 points) Find an arc length parametrization of $\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j} ; 0 \leq t \leq \pi / 2$
3. (34 points)
(a) (12 points) Solve the initial value problem $\mathbf{r}^{\prime}(t)=\mathbf{i}+e^{t} \mathbf{j}, \mathbf{r}(0)=\mathbf{i}+\mathbf{j}$
(b) (10 points) Find the equation of the tangent line to the curve when $t=\ln 2$
(c) (12 points) Calculate $\mathbf{T}(t)$ and $\mathbf{N}(t)$ for the function $\mathbf{r}(t)$ at $t=\ln 2$
4. (4 points each) Answer true or false
(a) A circle of radius 3 has constant curvature $1 / 3$
(b) If the vector-valued function $\mathbf{r}(t)$ describes the motion of an object over the time interval $[a, b]$, then the displacement of the object over that time interval is the arc length of $\mathbf{r}(t)$ over that time interval.
(c) If $f(x, y) \rightarrow L$ as $(x, y)$ approaches $(0,0)$ along the $x$-axis and $f(x, y) \rightarrow L$ as $(x, y)$ approaches $(0,0)$ along the $y$-axis then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=L$
5. (12 points) A shell is fired from ground level at an elevation angle of $45^{\circ}$. If the shell hits the ground 24,500 feet away, what is its muzzle speed?
6. (10 points) The equation of motion of an object moving along an elliptic path is $\mathbf{r}(t)=a \cos t \mathbf{i}+b \sin t \mathbf{j}$. Show that the acceleration is directed toward the origin.
7. (10 points) Find the level curve of the function $f(x, y)=x^{2}-2 x^{3}+3 x y$ that passes through the point $(2,-1)$
