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“‘It’s possible, but not interesting,’ Lönnrot answered. ‘You will reply that reality

hasn’t the slightest need to be of interest. And I’ll answer you that reality may avoid

the obligation to be interesting, but that hypothesis may not . . .’”

Jorge Luis Borges, Death and the Compass



iii

Acknowledgements

First, I would like to thank my advisor Thomas G. Hallam, who has helped me

through the scientific, professional, and personal obstacles I have met during this long

process with intelligence, understanding and caring. He is special to me as an academic

advisor and a life advisor. Without his help, this dissertation would not be a reality.

I must also acknowledge the contribution of the members of The Institute for

Environmental Modeling. Thanks to my fellow graduate students who have helped me

by listening to me talk about my work and by talking about other things important

to life to keep everything in perspective. Special thanks also go to Louis Gross, who

I admire as a scientist and a person. He has been an invaluable resource not only by

answering my questions, but by asking me questions that forced me to think about my

work in new ways.

Equally important to this work is Stephen Bates, whose knowledge of Pseudo-

nitzschia species and his willingness to share it with me provided a constant source of

information regarding the biology of the problem.

Thanks also to committee members Samuel Jordan and Steven Wilhelm. It was

my pleasure to learn mathematics from a teacher like Dr. Jordan. He will serve as

a model to me in my career as a college professor. Steven Wilhelm’s expertise in the

biology of algae has been much appreciated. I have valued our conversations about

biology as they have helped shape the way the work presented here has developed.

I would like to acknowledge my parents, Dionysios and Eleni Theoharidis, who



iv

have taken care of me and my family while I worked towards completing this task.

Thanks also to my colleagues at Maryville College, especially the Division of

Mathematics. I appreciate their support as I went through the final stages of this

dissertation. Their positive words have often lifted my spirits and rejuvenated my

optimism.

Finally, thanks to Giorgos, my husband, who has been supportive and patient

with me through this long process. I don’t have words to express how much he means

to me.



v

Abstract

In 1987 an outbreak of a previously unobserved disease occurred in Canada and

was traced back to the toxin domoic acid produced by the diatom Pseudo-nitzschia

multiseries. Since then, fisheries closures due to domoic acid have occurred worldwide.

Pseudo-nitzschia species produce domoic acid under nutrient stress, including low sil-

icon or phosphorus under high nitrogen conditions. However, it is still unclear what

conditions cause the dangerously high levels that have sometimes been observed. We

present an individual-based algae model detailing the physiology of an algal cell with a

focus on nutrient and energy flows to delineate the causes of domoic acid production.

The model has been adapted to the specific problem of Pseudo-nitzschia mul-

tiseries by including silicon dynamics, a frustule component, domoic acid production,

and sexual reproduction. The individual model is incorporated into a population model

using a McKendrick-von Foerster partial differential equation.

The model is compared to experimental data from chemostat and batch exper-

iments on two separate strains of Pseudo-nitzschia multiseries. The differences in pa-

rameter values required to fit each experiment reveal differences in the physiology of the

two strains, specifically in nutrient uptake, photosynthetic rate and the level of toxin

production possible. Simulations using the calibrated model show that silicon limitation

must be concurrent with an abundance of nitrogen for domoic acid production to be

high.
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Chapter 1

Introduction: Biological background and model description

1.1 Harmful algae blooms and Pseudo-nitzschia species

Throughout history, coastal areas have dealt with large algal blooms called “red

tides”; however, the past twenty years have been marked by a global increase in their

frequency and distribution. Although the reasons for this increase have not been deter-

mined, there are several possible causative factors including higher nutrient content in

water, atypical nutrient regimes and ratios due to cultural eutrophication, and ballast

water redistribution [33].

Red tides are a subset of events known as “harmful algal blooms” (HAB’s) because

they may be deleterious to specific organisms and to ecosystems in general. Pseudo-

nitzschia multiseries, of interest for this work, produces the neurotoxin domoic acid

(DA) placing it in a category with fewer than 100 which are known to produce toxins

out of approximately 5000 known algal species [33]. Since algae are primary producers

in aquatic ecosystems, the presence of a toxin-producing species in a marine ecosystem

can have repercussions for the entire food chain. Species of Pseudo-nitzschia have been

implicated in poisonings of sea birds, large sea mammals, and humans [2, 30, 52].

The human health and economic effects caused by toxic algae are of major con-

cern. Outbreaks have caused thousands of illnesses and several deaths. When an area

suffers an outbreak, the local economy may lose millions of dollars in fishery revenues

in addition to immeasurable losses in tourism. It is important therefore to attempt to
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understand the ecosystems containing these algae.

1.2 Pseudo-nitzschia multiseries and Domoic Acid

In Canada during 1987 an outbreak of a previously unobserved disease occurred.

Victims experienced typical symptoms of gastroentiritis coupled with neurological dis-

orders including disorientation and memory loss. After investigation, the cause of the

disease was traced to mussels harvested from Prince Edward Island and the disease

was dubbed Amnesic Shellfish Poisoning (ASP). It was later determined that the toxin

responsible for ASP is domoic acid, an amino acid produced by the diatom Pseudo-

nitzschia multiseries. Mussels feeding on this diatom can accumulate sufficiently high

levels of DA to render them toxic to humans and other animals that eat them. [74].

DA (Figure A.1) is an excitatory neurotoxic amino acid [25] which disrupts normal

neurochemical transmission in the brain, causing increased firing of the neurons thereby

destroying the cells [10]. The neurons in the hippocampus, the part of the brain most

responsible for formation and storage of memories, are particularly affected by DA

[42]. This explains the memory loss associated with ASP. In order to prevent further

illness, guidelines have been set for DA and Pseudo-nitzschia concentrations. Human

exposures of 1mg DA/kg mussel meat are considered dangerous [42]; therefore, any

shellfish exceeding 20 mg DA/kg wet weight or tissue are considered unsuitable for

consumption and shellfish beds are closed when the concentration of Pseudo-nitzschia

cells exceeds 100,000 cells per Liter [6].

Since the 1987 incident in Canada, domoic acid has been detected in several

worldwide locations, causing fishery closings and deaths of large marine mammals (Ta-

ble B.1). This has sparked several studies into the characteristics and relationships

between DA and Pseudo-nitzschia species. Chemists are attempting to characterize the
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toxin while biologists have attempted to characterize the conditions under which it is

produced. Pseudo-nitzschia are pennate, chain forming diatoms which can be motile

[54]. They have been found in the coastal waters of the northeast United States, eastern

Canada, the northwest United States, New Zealand, and Asia [6]. Due to the potential

toxicity, their life cycle and environmental needs have been extensively studied.

1.2.1 Silicon, Life Cycle, and Environmental Conditions

One important difference between diatoms and other algal species is that their

cell walls are enclosed within a silicon shell called a frustule. The requirements for

creation of the frustule make diatoms uniquely dependent on the availability of silicon

for continued growth. A lack of silicon can arrest the cell cycle in a stage between

mitosis and daughter cell separation, a period of silicon uptake and deposition of the

newly forming frustule [14, 71, 72]. It has also been shown that silicon is an important

element in other diatom cell processes such as DNA replication and protein synthesis

[71].

The frustule is composed of two interlocking halves, one larger than the other.

This arrangement can be pictured as a hat box where the lid has a slightly larger

diameter than the base. The larger piece is called the epitheca and the smaller is

called the hypotheca. Once protoplasm cleavage is completed, the cells form two new

hypothecae inside of the frustule of the parent cell. The result is one cell that is the

same size as the parent cell and one cell that is slightly smaller. This continued process

results in a reduction in the average cell size of the population. Sexual reproduction

may occur, resulting in return of larger cells (Figure A.2 ) [12].

The same cycle occurs in Pseudo-nitzschia multiseries. The large cells that are

the products of sexual reproduction continually divide resulting in successively smaller

cells, until the cells reach a minimum size and begin reproducing sexually. Pseudo-

nitzschia multiseries is a dioecious organism; therefore, both ”male” and “female” cells
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must be present for sexual reproduction to occur. Each cell produces two gametes,

and each pair may produce either one or two auxospores that develop into full-sized

cells probably through the use of nutrient reserves in the parent cells. Auxospores of

Pseudo-nitzschia multiseries take an average of 48 hours to become fully developed cells

[19]. It is likely that“younger” cells, i.e. those produced by sexual reproduction, are

more toxic than older, smaller ones [6, 19].

Many have studied Pseudo-nitzschia species to characterize favorable environmen-

tal conditions. Pan and coworkers studied how light levels affect growth and cellular

nitrogen (N), carbon (C), and chlorophyll a, as well as how the organism can adapt

to low light levels [62, 60]. They also determined the photosynthesis - photosynthetic

photon flux density (PPFD) relationship [60]. Jackson determined the salinity range

tolerated by Pseudo-nitzschia multiseries to be between 15 and 48%, and the effect of

salinity on maximum density and growth [43]. Bates and coworkers studied silicate and

have found that there is a linear relationship between initial silicate concentration and

cell yield in batch cultures [3]. There have also been studies that show the source of

nitrogen affects growth. Cells that receive N from nitrate grow faster than those that

use ammonium. In fact, ammonium in sufficient concentration can actually arrest cell

growth [8, 36]. Bates et. al. [6] have characterized the effects of temperature on growth,

photosynthesis, and DA production.

1.2.2 DA Production

DA production has also been the focus of many studies. According to Pan et.

al. [58, 61] there are two stages of DA production. The first corresponds to the late

exponential phase when the growth rate is slowing down after a period of rapid increase.

The second is during the stationary phase when population growth ceases due to nu-

trient limitation. More DA is produced in the second stage than in the first [58, 61].
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Production of DA is therefore probably triggered by some kind of stress, and is neg-

atively correlated to growth rate [7]. There are five nutrients that play a role in DA

production: nitrogen, silicon (Si), phosphorus (P) and the readily available elements

carbon and hydrogen (H). If the population is N limited, DA production will not occur

even though cells are no longer dividing [3]. On the other hand, sufficiently low levels of

P or Si trigger production of DA. DA production is negatively correlated with both P

and Si available in the system. However, production under silicate limitation is higher

than production under phosphate limitation [58, 61].

Another factor determining DA production is the interaction of bacteria with

the diatom. As with many other plants and bacteria, it appears there are symbiotic

relationships between Pseudo-nitzschia species and their associated bacteria. It has

been shown that non-axenic (bacteria-containing) cultures of Pseudo-nitzschia survive

longer in the stationary phase than axenic cultures and that DA production can increase

by 20% when bacteria are present in the system [22]. While growth rate and cell yield

remained unaffected when bacteria were reintroduced to axenic cultures of Pseudo-

nitzschia multiseries, DA production was 8 to 38 times higher than without bacteria.

This range of production depends on the strain of algae used. Several different types

of bacteria can cause this increase, regardless of whether they are originally isolated

from toxic algal species or not [4, 5]. The reasons for the increase in DA production are

not entirely understood; however, the bacteria may be producing a precursor to DA or

providing dissolved organic matter or CO2 which contain carbon and nitrogen for DA

synthesis. It may also be that bacteria are responsible for regenerating nutrients which

prolong the viability of algal cells during the stationary phase when DA is known to be

produced [5, 22].

The most extensive work on the interaction of DA producing diatoms and bacteria

has been done by Stewart [70]. He has isolated bacteria from several strains of DA

producing diatoms. The bacteria that were isolated could be divided into two groups.
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The first group is able to produce significant amounts of acids from carbohydrates.

In particular, all cultures yielded at least one bacterial species that produced gluconic

acid/gluconolactone from glucose. This substance is thought to be of importance in

DA production. The second group were able to grow readily by using free amino acids.

When bacteria were separated from the algae they were not able to divide or even grow

well without a source of organic nitrogen. This implies that the diatom may provide

organic nitrogen for the bacteria. On the other hand, the growth of non-axenic diatoms

was increased by adding proline to the medium, but the addition did not affect the

growth of axenic cultures. Because proline also aids in bacterial growth it is suggested

that bacterial growth provides organic materials in the form of proteins, peptides and

free amino acids each of which is a source of nitrogen-containing ammonium for the

diatom [70].

Osada and Stewart [57] have studied the physiological influences of gluconic

acid/gluconolactone on DA production. By adding substances to axenic and non-axenic

diatom cultures they have obtained some interesting results. Specifically, the highest

rate of DA production was observed in an axenic culture when gluconic acid/gluconolactone

was added to the medium. Moreover, the effect of this substance on DA production is

concentration dependent, with higher concentrations of gluconic acid/gluconolactone re-

sulting in generally higher production of DA. Additionally, DA production was enhanced

by the presence of a gluconic acid/gluconolactone-producing bacterium but not in the

presence of a non-producer. It is hypothesized that since gluconic acid/gluconolactone

can act as a sequestering agent, the increase in DA production is due to more severe

nutrient limitation when it is present.

1.3 Existing HAB Models

As early as 1953, models were used to study algal blooms. The Kierstead and

Slobodkin model [?] examined the opposing effects of growth rate and diffusion on
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phytoplankton blooms. This model consists of one algal species exhibiting a linear

growth rate which is limited physically by diffusion out of a favorable patch of water.

It is represented by the following equation:

∂c

∂t
= D

∂2c

∂x2
+ Kc (1.1)

where c is the concentration of algae (cells/unit length), D (length2/time) is the diffu-

sivity, K is the growth rate(time−1) per unit population, t is time and x is the horizontal

position. At the boundaries x = 0 and x = L, c is set to zero, representing unfavorable

conditions outside the patch. The model is then used to quantify a minimum patch

length, L, related to the ratio of diffusion to growth, that can maintain a bloom [48].

Since the advent of reaction-diffusion problems, other models have been developed with

different goals in mind [29].

The simplest of these other models are the aggregated ones without complex phys-

ical dynamics such as currents, shear, and mixing. For example, Wyatt and Horwood

[77] considered a dinoflagellate species with motile and non-motile components, both

subject to constant grazing pressure. By assuming that the water is well stratified and

that the motile algae choose to congregate at the depth where their reproductive rate

is maximized, the authors conclude that red tides can result when water is stratified

allowing motile red tide organisms to move to the water depth that is most favorable

to them and thus escape control by grazers. The authors include toxin levels using the

concentration of the algae coupled with diffusivity [77].

Another example of an aggregated model is that of Truscott [75] which includes a

phytoplankton species and a grazer in a homogeneous environment. The phytoplankton

grow logistically according to nutrient limitation and the grazers have constant mor-

tality. Efficiency of metabolism and handling times for the grazers are also included.

Truscott treats this as an excitable system, such that small changes in specific phyto-
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plankton growth rate can allow the phytoplankton to escape grazer control and form a

bloom.

While aggregated models give an idea of phytoplankton dynamics, they consider a

system of only one algal species when often there are several species present in a bloom.

Researchers have also considers multiple species models. Since much of the focus of

these models is to explain the paradox of the plankton [40], they often include a variable

environment which allows several species to coexist in non-equilibrium dynamics.

Ebenhoh [23] considered a linear multispecies model with n species and non-linear

forcing:

dXj

dt =















(αj − βj)Xj R > Rj

−βjXj R ≤ Rj

dR
dt = −ΣjεJ(R)αjXj J(R) = {j : Rj < R}

(1.2)

where Xj (numbers/volume) is the concentration of the jth algal species, j = 1, ..., n

each with growth rate αj and mortality rate βj . Rj is the growth limiting threshold for

the nutrient and R is the nutrient concentration. This model also includes a nutrient

pulse of amount A per unit volume at regular time intervals of length T , so that when

time t is a multiple of T , the nutrient concentration is increased by A. By changing the

time interval T and the nutrient pulse A, the model can allow any subset or all of the

algal species to coexist.

Kishimoto [50] investigated the problem of coexistence using a nonlinear J -species

model in two patches, u and w, where interpatch migration is equal in all species.

dui

dt = (pi − ΣJ
j=1aijuj)ui

dwi

dt = (pi − ΣJ
j=1bijwj)wi

(1.3)

where ui(t) and wi(t) are the numbers of individuals of the ith species in the first and
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second patches at time t, pi are intrinsic growth rates, and aij and bij (time−1numbers−1)

are the competition coefficients for species i and j in each patch. The assumption that

the coexistence of two competitively exclusive species results in a surplus of resources

implies that any number of species may coexist by taking advantage of the surplus left

by the first two.

The Kierstead and Slobodkin model described in Equation 1.1 included the simple

physics of diffusion. Since then, others have added more complex physical and biolog-

ical dynamics to the model. Kamykowski [45] investigated the effects of semi-diurnal

internal tides on phytoplankton using the theory of small amplitude waves and allow-

ing both horizontal and vertical movement. The phytoplankton are divided into three

categories, non-motile, weakly motile (do not cross variable thermocline) and motile

(may cross variable thermocline). Any swimming behavior was superimposed onto the

water motion. The results from simulations show that internal diurnal tides may ac-

count for patchiness observed in the field, both in abundance and in species composition.

Kamykowski [46] used this model again with some modifications in order to compare the

growth of a model Gymnodium splendens population in stationary versus wavy water

columns. The wavy column model resulted in patchiness of phytoplankton populations

according to environmental variations in light and water motion.

Representative of the more complex physical and biological models that have

been developed, Kishi and Ikeda [49] studied a predator-prey model that includes the

physical properties of wind-induced movement of sea water and a tidal current. They

begin with the simple predator prey model with one phytoplankton species and one

zooplankton species modelled by Michaelis-Menten uptake kinetics. This model is the

basis for a two dimensional model that includes wind-induced upwelling. The results of

this model show that a combination of vertical migration and upwelling are important

to a red tide model.

Kishi and Ikeda also developed a three dimensional model using the Navier-Stokes
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equation in the plane to generate the kinetic equations for current movements. They

then constructed a compartment model which includes tidal currents in three directions,

vertical migration, diffusion, and biological interactions. The authors used this model to

conclude that nutrient loads and oceanographic conditions including tidal currents and

wind-induced water movement influence the rapid increase in phytoplankton populations

that results in a bloom.

More recently, workers have been interested in modeling the dynamics of toxic

species. One such model is that of Howard et al. for cyanobacteria [38]. This aggregated

model includes light- and phosphate-limited growth in a non-homogenous environment.

In addition to bacterial movement, wind-induced lake mixing affects available light and

nutrient concentrations. The authors were able to match existing field data suggesting

that cyanobacteria populations grow most rapidly when lake conditions are calm, but

continue to grow at a depressed rate during periods of lake mixing. Along the same

lines is the model of Belov [9]. In this age-structured model, toxin production and

release depend on cell age, nutrient availability, light, and temperature. The vertical

concentration of toxin throughout the water column is modeled by a diffusion equation.

Flynn and coworkers have developed a model of toxin production for a generic

toxin-producing dynoflagellate based on an aggregated model focused on the detailed

physiological processes of nitrogen uptake and use by algae [26, 28, 27]. The underlying

model includes uptake of ammonium and nitrate and the dynamics of the corresponding

nutrient pools as affected by reduction and synthesis activities inside the cell. In order

to better model toxin production, photo-acclimatization and bleaching from nitrogen

deprivation were included. The driving force of toxin production is assumed to be

available nitrogen either from amino acids or the protein pool. A component of the

toxin may be recycled into nitrogen available for cell growth. The model produces time

series data of toxin concentrations and a relationship between toxin production and

light availability.
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1.4 Methods - Stoichiometric Modeling

The models discussed in the previous section are intended to be a sampling of

some of the characteristic models relating to algal blooms and toxic algae. We take a

different approach by emphasizing individual physiology of the algae cell and focusing

on biological rather than physical effects on population dynamics. Thus, we employ an

individual-based algae model detailing the physiology of an algal cell with a focus on

nutrient and energy flows modeled by differential equations. The individual model is in-

corporated into a population model using a McKendrick-von Foerster partial differential

equation. The details of the model are left to Chapter 2.

The basis of the individual model is the work of Kooijman et al. [51] which makes

explicit use of mass-balance conservation laws. The general approach is to track each

nutrient of interest throughout the system including the processes of uptake from the

external environment, assimilation into a nutrient pool, use in maintenance or growth of

the organism, and breakdown from storage for reuse and excretion. A similar approach

is described by Desai et al. in a model of fermentations of Clostridium acetobutylicum

[20].

The elementary component of such a model is a transfer matrix. Consider a

model with three internal components S1, S2, and S3, representing protein, lipid and

polysaccharides and three basic nutrients of interest, N1 and N2 and N3, carbon, nitro-

gen and phosphorus that are taken up in the form of two external substances E1 and

E2. Let νi,j be the number of atoms of nutrient Ni in one molecule of substance Ej .

Then the uptake of nutrients into the internal nutrient pool is described by the matrix

multiplication
















ν1,1 ν1,2
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ν3,1 ν3,2
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Ė2









(1.4)
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where Ėi denotes the uptake rate of external substance i, which may be a function of

concentration of chemical and physical parameters such as Ei and temperature. Simi-

larly, the net gain or loss from the nutrient pool due to manufacture and breakdown of

substances Si can be summarized by the matrix multiplication
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µ2,1 µ2,2 µ2,3

µ3,1 µ3,2 µ3,3
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(1.5)

where Ṡi denotes the net rate of change of substance Si in the cell. This approach

requires the assumption that all complex molecules have the same composition within

type, so that, for instance, every protein is made up of the same number of carbon,

nitrogen and phosphorus atoms. The above description applies to mass fluxes; however,

fluxes of energy can be treated in much the same way, particularly in plant cells where

the ATP molecule can be treated as the standard energy currency for the organism.

The strength of this approach is its generality. The structures, nutrients and ex-

ternal substances of interest can be defined to be whatever is important to the system

being modelled. In addition, the stoichiometric approach to modelling ecosystems has

gained speed recently. “Ecological stoichiometry” was an idea put forth by Reiners [69]

in order to better explain ecosystem dynamics. While ecosystem modelers have always

considered energy fluxes when constructing their models, Reiners suggests that they

need to keep track of the basic elemental ratios at each trophic level in order to better

describe a system, since similar organisms tend to have similar chemical composition.

This is evidenced for algae by the Redfield ratio that states that carbon, nitrogen, and

phosphorus are contained in algae in the ratio of 106:16:1 [68]. Using the law of conser-

vation of matter and several axioms concerning the elemental dynamics of organisms,

”theorems” including the existence of niches are deduced [69]. When stoichiometric

information is included, the limiting process on an ecosystem can sometimes be delin-

eated, while consideration of energy fluxes alone does not allow for the possibility of
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nutrient limitation. At the ecosystem level, processes such as differential recycling of

nutrients and life history characteristics may be explained [24]. When the stoichiometric

approach with two elements, carbon and phosphorus, was applied to a classic Lotka-

Volterra system, new dynamics arose including the existence of multiple equilibria, some

of them exhibiting coexistence [53].

While the focus of this work is on a single species, the stoichiometric approach

is still important. Since toxin production is correlated with nutrient availability and

growth rate, it is logical to assume nutrients that affect toxin production should be

included and tracked in the model. In addition, this approach allows for nutrient or

energy limitation of individual and population growth which may give some insight into

bloom dynamics as well as DA production. Finally, this model may form the basis for

an ecosystem model that may include associated symbiotic bacteria and a shellfish or

crustacean predator, in which case all the above arguments will apply.

1.5 Objectives

The general objective is to use the individual-based and stoichiometric modeling

approaches to create and analyze a model of a toxic algae species. A system of differential

equations is used to model internal cell processes and to track nutrients both in the cells

and their environment. The individual model includes nutrient uptake, photosynthesis,

formation of the complex cell components protein, lipid, polysaccharide, frustule, and

domoic acid, and catabolism of storage in times of low energy. However, the complex

nature of chemical processes such as the Krebs’ cycle and specific biochemical details of

frustule formation are not included.

The wealth of experimental data on the species Pseudo-nitzschia multiseries al-

lows us to validate the model by fitting it to experimental data. In particular, Pan

and coworkers performed a set of experiments in batch and chemostat cultures during

which they tracked population density, toxin levels in the cells and medium, and silicate



14

concentration in the medium [58, 59]. A valid model was defined as one that resulted in

outputs within 25% of experimental population numbers and evidenced the high levels

of toxin production attained at the end of batch culture experiments. In the batch

culture, a population was introduced into a nutrient-containing medium and allowed to

grow undisturbed until nutrients became depleted and growth stopped. The model will

be used to represent the data associated with batch culture, emphasizing population

dynamics, high levels of domoic acid concentrations occurring during stationary phase,

and a qualitative fit to external silicate. A sensitivity analysis is also done in this setting

to determine governing parameters and any interactions between them.

The experiments in the chemostat are particularly important to validating the

model. Since the chemostat system allows constant flow through the system, it more

closely resembles the dynamics that may occur in an ocean environment. Therefore,

it is important that the model can mimic these experiments in addition to those in

batch. The experiments performed on chemostat cultures showed much higher toxin

levels than those in the batch culture possibly due to the use of a different strain of the

algae. Comparing the parameter values required to fit batch and chemostat experiments

may give some insight into the physiological differences between the two strains.

An investigation of model behavior under varying environmental conditions in

the chemostat will also be performed. This may help to characterize nutrient regimes

that cause different levels of toxin production and uncover strengths and weaknesses in

the model. In addition, some recommendations for further biological experimentation

may be made based on the results of this investigation.



Chapter 2

The Individual-Based Population Model for the Diatom

Pseudo-nitzschia multiseries

The model discussed here forms the basis of this work. It is an extension of the

model developed by Hurlebaus [39] and Miller [55] to model a generic algae species (Fig-

ure A.3). The state variables for the system are mass of protein, mPr (µmol), mass of

lipid, mLp (µmol), and mass of polysaccharide, mPs (µmol). The mass of frustule, mFr

(µmol), is included as well but is not a state variable since it changes only in relation

to reproduction. (All model variables are listed in Table B.2 and parameters are listed

in Table B.3.) Each algae cell takes up external substances from the environment and

deposits them into the nutrient pools. Photosynthesis builds the energy pool which

is used for maintenance and growth. The pools are depleted through anabolism to

create proteins, lipids, polysaccharides, frustule, or domoic acid and can be replenished

through catabolism of polysaccharides, lipids and proteins in times of nutrient or energy

limitation. Modifications have been made to the individual model to describe silicon

uptake kinetics, formation of a frustule, and production of domoic acid. At the popula-

tion level, life cycle peculiarities of diatoms including shrinking during cell division and

sexual reproduction have been added.
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2.1 The Individual Model

2.1.1 Uptake Kinetics

The external nutrients modeled are nitrogen (N) in the forms of nitrate (NO−

3 )

and ammonium (NH+
4 ); phosphorus (P ) as orthophosphates and other phosphates; iron

(Fe); and silicon (Si), in the form of silicic acid (SiO2). Carbon (C) is considered to be

plentiful in the environment and is treated separately in relation to photosynthesis. With

the exception of silicic acid and carbon, the uptake rate, ρup,φ, for external nutrients

(φ) is based on Michaelis-Menten kinetics multiplied by an internal inhibitory term that

provides for saturation of nutrient. This prevents internal nutrient pools from increasing

indefinitely.

ρup,φ(φe, T, φi) =



















(

1
a

v(T )
+

cφe
φe

)

(

1 − φi

cφi
mPr+φi

)

nφe
SA φe > 0

0 φe = 0

(2.1)

where φe (µmol cm−3) and φi (µmol) are the external and internal concentrations of

nutrient φ respectively, T is water temperature, a (cm) is the cell wall thickness, cφe
(s

cm−3) is a proportionality constant associated with nutrient φ, cφi
(nd) is a constant

reflecting the effect of the internal concentration of nutrient (φi) on uptake rate, mPr

is the mass of protein in the cell, nφe
(cm−2) is the density of transport sites for uptake

of nutrient φ on the cell surface and SA (cm2) is the cell surface area. The transport

velocity v(T ) is given by the Arrhenius equation

v(T ) = Se

(

TA
T1T

(T−T1)

)

(2.2)

where S (µmols cm s−1) is a rate constant, TA (degrees Kelvin) is the Arrhenius temper-

ature and T1 (degrees Kelvin) is the chosen reference temperature at which the velocity

equals the rate constant.

The surface area of the cell is assumed to be directly related to volume which is

a function of mass of protein mPr,0, mass of lipid, mLp,0, and mass of polysaccharide
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mPs,0 of the cell immediately following cell division or when a new cell is created through

sexual reproduction.

SA = V 2/3 =

(

mPr,0

σPr
+

mLp,0

σLp
+

mPs,0

σPs

)2/3

(2.3)

where σPr (µmols cm−3), σLp (µmols cm−3), and σPs (µmols cm−3) are the molecular

densities of protein, lipid, and polysaccharide, respectively.

The expression for silicon uptake is similar to the uptake of other nutrients. How-

ever, silicic acid uptake by diatoms has been shown to be a carrier-mediated process

[71] which may be less effective at low concentrations than at higher ones. Therefore,

the Michaelis-Menten part of the expression is modified by making it dependent on the

square of the external concentration giving it the general form of a type III functional

response,

F (x) =
Mx2

k + x2
(2.4)

While adding the square changes the uptake rate and the half saturation constant to
√

k,

the saturation level remains the same. Also, the classic form is concave down for positive

x, but this function is concave up when x > 0 but close to 0, and changes concavity

at
√

k
3 (Figure A.4). Thus this representation assumes that for small concentrations

the uptake sites may not be exposed to silicon, but increases in concentration result in

higher increases in uptake rate until there are few unused transport sites left and then

the uptake rate increases less with increased concentration. Another difference in the

uptake function for silicon is that the inhibition term is the ratio of the mass of silicon in

the pool and frustule with a multiple of the mass of frustule immediately preceding cell

division 2mFr0 . No uptake of silicon occurs if the total silicon in the pool and frustule

is greater than a constant, cFr times the amount of silicon needed to lay down the

hypothecae of the daughter cells. Finally, because diatoms have been shown to adapt to

low nutrient concentrations by increasing their ability to take up that nutrient [18, 44],
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the entire expression for silicon uptake is multiplied by a decaying exponential function

that affects uptake only at low external silicon concentrations. Therefore, the uptake

rate of silicon, ρup,Si, is given by

ρup,Si(Sie, T, Sii) =



































L(Sie)

(

1
a

v(T )
+

cSie

Si2e

)

(

1 − Sii+mfr

2cSii
mFr0

)

nSieSA Sii + mFr < cFrmFr0

and Sie > 0

0 otherwise

(2.5)

where

L(Sie) = 1 + λ0e
−ρSie . (2.6)

Sie (µmol cm−3) and Sii (µmol cm−3) are external and internal silicon concentrations,

cSie (s cm−3) is the proportionality constant associated with external silicon, cSii (nd)

reflects the effect of the internal concentration of silicon on uptake rate, cFr (nd) is a

constant, and nSie (cm −2) is the density of transport sites for silicon per cell surface

area. The constant cFr multiplies the initial amount of silicon in the cell; when the total

amount of silicon in the frustule and nutrient pool reaches this multiple of the initial

amount, silicon uptake ceases. L(Sie) can be interpreted as a measure of the efficiency

of silicon uptake, which increases at very low silicon concentrations. Therefore, the

constant λ0 (nd) is the maximum additional uptake efficiency and ρ measures the rate

of efficiency loss per unit of external silicon concentration. The addition of the L(Sie)

multiplier changes the shape of the uptake curve by providing a local maximum at low

silicon concentrations (Figure A.5).

2.1.2 Photosynthesis and Carbon Uptake

Photosynthesis, one of the most important processes of an algae cell, provides the

cell with the energy (ATP) and the carbon needed to build protein and storage com-

ponents and to carry on other energy requiring cell processes. After conducting exper-
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iments with Pseudo-nitzschia multiseries, Pan [62] concluded that the photosynthesis-

irradiance curve proposed by Platt et al. [65] was the best fit for the species. This curve

was developed to address the problem of photoinhibition with a continuous rather than a

piecewise continuous function. The assumption is that photosynthesis is linearly related

to irradiance when it is low, and slowly saturates at higher irradiances. Photoinhibition

was added as a process independent of the original model parameters (Pmax, α).

The relationship between photosynthetic rate and irradiance is given by

P (I) = Pmax(1 − e−αI/Pmax)e−βI/Pmax (2.7)

where Pmax (µmolC[µmolCbiomass]−1s−1) is the maximum photosynthetic rate in the

absence of photoinhibition, α (µmolC[µmolCbiomass]−1s−1[µmolm−2s−1]−1) is the ini-

tial slope of the photosynthesis irradiance curve. I ([µmolm−2s−1]−1) is irradiance, and

β (µmolC[µmolCbiomass]−1s−1[µmolm−2s−1]−1) is the photoinhibition index.

Carbon, adsorbed as CO2, is assumed to be plentiful in the environment. There-

fore, the uptake rate depends only on photosynthetic rate and surface area of the cell

according to the following equation:

ρup,C(I) = P × SA (2.8)

The basic unit of energy in the model is adenosine triphosphate (ATP), denoted

E (µmols). The cell gets energy either from photosynthesis or catabolism. The model

sets the amount of ATP produced through photosynthesis at twice the amount of car-

bon taken up, representing the process of non-cyclic photophosphorylation. It should

be noted that there may be by-products produced by this process that can generate

additional ATP, but this is not included in the model [66].
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2.1.3 Structure and Storage

Once nutrients have been incorporated into internal pools and ATP has been

produced from photosynthesis, those elements are used to create proteins, frustule,

polysaccharides and lipids. A functional response associated with the building of each

of these substances is constructed that takes into account all the necessary nutrients

and ATP required to make one molecule of the cell. The creation of one molecule of any

substance is a function of the internal concentrations of its components. The functional

response takes into account a wait time associated with the arrival of each constituent

from the nutrient pool to a location where the substance will be constructed. Therefore

to provide a common currency for the model, the rate of production is proportional to

the most limiting nutrient, i.e. the one with the highest waiting time associated with

it. Each functional response is normalized to one atom of carbon except that of the

frustule, which is normalized to one atom of silicon.

The functional responses for proteins, frustule, polysaccharides and lipids are as

follows:

fPr(E,Ci, Ni, Pi) =
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max(
kC,PrCCi

Ci
,kN,Pr

CNi
Ni

,kP,Pr

CPi
Pi

,kE,Pr
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E

)+ 1
Im,Pr

Ci, Ni, Pi, E > 0,

0 otherwise;

(2.9)

fFr(E,Sii) =
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max(
kSi,FrCSii
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,kE,Fr

CEi
E

)+ 1
Im,Fr

Sii, E > 0,

0 otherwise;

(2.10)

fPs(E,Ci) =
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max(
kC,PsCCi
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,kE,Ps

CEi
E

)+ 1
Im,Ps

Ci, E > 0,

0 otherwise;

(2.11)

fLp(E,Ci, Pi) =



















1

max(kC,Lp

CCi
Ci

,kP,Lp

CPi
Pi

,kE,Lp

CEi
E

)+ 1
Im,Lp

Ci, Pi, E > 0,

0 otherwise;

(2.12)

where φi (µmol) is the internal mass of substance φ, Cφi
(s) is the wait time for a
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molecule of substance φ, kφi,φs
(µmol/s) relates the number of atoms of substance φi

used to make φs per unit C per unit time, and Im,φs
(nd) represents the building time

for one molecule of substance φs.

The two storage components, polysaccharide and lipid, can be processed via

catabolism in times of low energy to release energy and nutrients back into the pools.

The catabolic rates, gPs (µmols s−1) and gLp (µmols s−1) are inversely proportional to

the amount of ATP in the energy pool and are given by

gPs = kPs,0

(

1 +
kPs,3

Pi

)

1

kPs,1 + kPs,2
E

mPs

, (2.13)

gLp = kLp,0

(

1 +
kLp,3

Pi

)

1

kLp,1 + kLp,2
E

mLp

, (2.14)

where kφs,0 (µmols s−1) is the maximum catabolic rate of substance φs, kφs,1 and kφs,2

(nd) and kφs,3 (µmols) are constants.

Combining the functional responses with catabolism gives differential equations

for each of the four components.

dmPr

dt
= m0,P rfPr(E,Ci, Ni, Pi), (2.15)

dmFr

dt
= m0,F rfFr(E,Sii), (2.16)

dmLp

dt
= m0,LpfLp(E,Ci, Pi) − gLp, (2.17)

dmPs

dt
= m0,P sfPs(E,Ci) − gPs, (2.18)

where m0,φs
(µmol s−1) is the maximum number of φs molecules fixed per unit time.

2.1.4 Domoic Acid Production

The biochemical pathway leading to domoic acid production is still not completely

known. In the model, the production of domoic acid is treated much like the production

of the cell components protein, lipid, polysaccharide and frustule. However, there are

two differences. Domoic acid is produced after all structure and storage components
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so that synthesis occurs only if there is excess energy and nitrogen available in the

pools. This is a reasonable assumption since very little domoic acid is produced when

cultures are actively dividing in the exponential growth phase and production increases

as the population growth rate slows down [58]. In addition, since DA production has

been shown to increase with decreased external silicon, we make the assumption that

the maximum rate of DA production is related to the changes in physiology required

to increase silicon uptake during times of low external silicon concentration. Thus, a

formulation for domoic acid production that satisfies these assumptions is

dmDA

dt
= m0,DAL(Sie)fDA(E,Ci, Ni), (2.19)

where m0,DA is the maximum number of domoic acid molecules fixed per unit time,

L(Sie) is given in Equation 2.6. The functional response fDA is given by

fDA(E,Ci, Ni) =
1

max(
CCi

Ci
, kN,DA

CNi

Ni
, kE,DA

CEi

E ) + 1
Im,DA

(2.20)

where kN,DA (µmol) and kE,DA (µmol) are the number of nitrogen and ATP molecules

needed to create one molecule of domoic acid, respectively and Im,DA (nd) is the maxi-

mum reaction rate for one molecule of DA.

2.1.5 Energy Dynamics

In addition to the energy required to create cell structures, domoic acid and the

energy gained from photosynthesis, there are two other components that affect the

change in energy in a cell. We take into account the energy needed to maintain the cell

and the energy that can be gained through respiration. Cell maintenance is assumed to

be directly proportional to the total internal (non-frustule) mass:

M = M0(mPs + mLp + mPr) (2.21)
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where M0 (s−1µmol−1) is the maintenance cost associated per unit biomass. Respiration

is given as a fraction of available carbon

R(Ci) = jCCi (2.22)

where jC (s−1) is the fraction of the carbon pool respired per second.

Combining all the energy supply processes and energy demand processes, we get

the change in the energy pool per unit time:

dEi

dt
= µATP,COP (I) − kE,Pr

dmPr

dt
− kE,Lp

dmLp

dt
− kE,Ps

dmPs

dt
− kE,Fr

dmFr

dt

−kE,DA
dmDA

dt
− M + µATP,COR. (2.23)

Recall that P (I) is the photosynthetic rate, M is the maintenance rate and R is the

respiration rate. The constant µATP,CO (µmol) is the number of moles of ATP produced

when a mole of CO2 is used in the Krebs cycle.

2.1.6 Nutrient Pool Dynamics

Similarly to the energy flux, nutrient pool fluxes are simply the summation of

all nutrient-providing and nutrient-requiring processes. Therefore, the equations below

represent the transition matrices discussed in Section 1.4.

The carbon flux is dependent on photosynthesis, respiration, domoic acid, and

anabolism and catabolism of protein, lipid, and polysaccharides:

dCi

dt
= P +

dmPr

dt
+

dmLp

dt
+

dmPs

dt
+

dmDA

dt
− R. (2.24)

Note that constants relating carbon to each component are not necessary since the

parameters have been normalized to one carbon atom.

The nitrogen flux is dependent on uptake, anabolism of proteins, and domoic acid

production:

dNi

dt
= ρup,NO3 + kN,Pr

dmPr

dt
+ kN,DA

dmDA

dt
. (2.25)
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kN,Pr and kN,DA are the number of nitrogen atoms needed to create one molecule of

protein and one molecule of domoic acid, respectively.

Phosphorus flux is dependent on uptake of orthophosphates and other phosphates,

protein and lipid flux. In addition, three phosphorus atoms are used or released when-

ever a molecule of ATP is created or used, respectively:

dPi

dt
= ρup,OP + ρup,OR + kP,Pr

dmPr

dt
+ kP,Lp

dmLp

dt
− 3

dEi

dt
. (2.26)

kP,Pr and kP,Lp are the number of nitrogen atoms needed to create one molecule of

protein and one molecule of lipid, respectively.

Finally, silicon flux is given by silicic acid uptake and frustule dynamics:

dSi

dt
= ρup,SiO2 +

dmFr

dt
. (2.27)

2.1.7 External Factors

The equations governing the external concentrations of nutrient are simple mass-

balance equations:

dφe

dt
= ρin,φe

−
∑

species

∑

ecotypes

ρup,φδsp,e (2.28)

where ρin,φe
(µmol l−1s−1) is the input of substance φ into the ambient water and δs,e

(cells l−1) is the density of cells of ecotype e and species sp.

2.2 The Population Model

The individual model is incorporated into a population model which tracks in-

dividuals grouped by mass of protein, mass of lipid, and mass of polysaccharide. The

classic McKendrick-von Foerster partial differential equation model is

∂δ

∂t
=

3
∑

i=1

∂

∂mi
(φi(m)δ) − Dδ (2.29)
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where δ (cells/liter) is the population density, m = (mPr,mLp,mPs) is the vector of state

variables, φi(m) is the derivative with respect to time of mi, and D (s−1) is the death

rate. This equation requires a boundary condition representing new cell production

B(t) =

∫

∞

0

∫

∞

0
δ(t,mPs,mLp, 2mPr,0)

+

∫

∞

0

∫

∞

0
δ(t,mPs(1 − l),mLp(1 − l), 2mPr,0(1 − l))dmLpdmPs

+

∫ mPr,Tr

0

1

2
δ(t,mPs,mLp,mPr)dmPr (2.30)

The first and second terms represent individuals which are the result of cell division

where mPr,0 is the initial protein level of the cell, and l represents the loss of biomass

when the smaller cell is produced. The third term represents individuals resulting from

sexual reproduction, where mPr,Tr is the mass of protein that triggers the cell to produce

gametes. We assume only one auxospore is produced per sexually reproducing pair.

2.2.1 Mortality

Mortality of the cells occurs either through sinking or grazing. Sinking is a func-

tion of cell volume V (cm3) and depth of the surface layer z (m):

x

z
δ(t, V ) (2.31)

where V is calculated from equation 2.3 and is a function of mPs, mLp, and mPr. The

grazer is modeled by an aggregated model using Michaelis-Menten dynamics, where

grazing rate depends on the volume of the algae cells:

dZ

dt
= MiAe

ΣspeciesΣecotypesΣcohortsq(x)δ(t, V )

ΣspeciesΣecotypesΣcohortsq(x)δ(t, V ) + κ
Z − θZ (2.32)

where Z (#/m3) is grazer density, Mi is the maximum ingestion rate of the grazer,

Ae represents its assimilation efficiency, q(x) is the probability a grazer will ingest a

cell with volume V , κ is the half saturation constant and θ represents a constant rate

of mortality. From the above expression, the losses from each algae cohort will be

q(x)δ(x, t).
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2.3 Model Implementation

The model is implemented through a computer code written in the C program-

ming language and compiled with gcc. A thirty-day simulation with a single cohort

takes 39 CPU seconds when the program is run on a PC with a Pentium III 800 MHz

processor running Linux 8. A two-step Runge-Kutta method with step size of two sec-

onds is used to solve the differential equations in the individual model. While in nature,

cell processes would be occurring simultaneously, writing a computer code requires that

processes be prioritized. For example, the anabolic processes for protein, lipid and

polysaccharide all require energy; if we allow them to proceed based on the same avail-

able energy in the energy pool, this may result in an overdraw and a negative value

for the energy pool. To avoid this problem, the processes are prioritized so that each

subsequent process proceeds according to what is left from the previous ones (Figure

A.7).

Logically, the first task the cell performs is to set aside the necessary energy for

maintenance since without this, the cell could not survive. It then begins to take up

nutrients from the enviroment and places them into the nutrient pools where they be-

come immediately available for the subsequent processes in the same time step. Uptake

is followed by photosythesis. Therefore, the pools become replenished before any of the

other model processes continue.

We assume the cell puts resources into growth before storage, therefore the an-

abolic processes are ordered so that protein is created first, followed by lipid, polysaccha-

ride and frustule. Frustule is given last priority because the cell likely creates frustule

only after the protoplasm is ready to divide [72]. While the model does not exactly

mimic the natural behavior, as frustule is constantly incorporated, making frustule

formation follow production of all other structure and storage components is a good

approximation. Finally, if there are nutrients and energy left in the pools, the cell pro-
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duces DA, possibly as a secondary metabolite. Anabolism is followed by catabolism of

polysaccharide and lipid in that order.

Another important component to the model implementation is that some of the

cell processes cease when cell protein has doubled but the cell division has not yet been

completed due to a lack of silicon. Once protein has doubled, the cell does not absorb

any nutrients except silicon. In addition, anabolism of protein, lipid, and polysaccharide

and catabolism no longer occur. Instead, the cell puts all of its resources into building

the hypothecae of the daughter cells and may also produce DA if there is extra energy

and nutrients in the pools to do so. During this phase, maintenance costs continue to

contribute to losses from the energy pool while photosynthesis continues at a reduced

level.



Chapter 3

Model Validation and Sensitivity Analysis

A series of batch culture experiments was performed by Pan and coworkers to

investigate the effects of silicate limitation on the dynamics and domoic acid production

of a population of Pseudo-nitzschia multiseries [58]. The first of the three experiments

served as the basis for a sensitivity analysis in order to determine the parameters that

most affect population, total domoic acid, and external silicon dynamics. Subsequently,

model output for these three variables was compared to the experimental data in the

paper. All the results of this chapter were obtained by setting the parameter λ0 in

Equation 2.5 equal to zero. The initial structure of the model population included 10

cohorts distributed uniformly over the range of mass of protein and mass of frustule of an

individual diatom cell, representing cells in varying stages of growth. Thus, L(Sie) = 1,

the Si uptake rate is modelled by the modified Michaelis-Menten curve in Equation 2.5

and domoic acid production follows the exact same functional response as protein, lipid,

polysaccharide and frustule.

The following sensitivity analysis will show that the parameters that resulted in

the most dramatic changes in model output could be grouped into three categories: pho-

tosynthesis, energy dynamics, and silicon dynamics. For photosynthesis, the significant

parameters were α, β, and Pmax (Equation 2.7), while CE (Equations 2.9, 2.10, 2.11,

2.12) and kE,Pr (Equation 2.9) were the sensitive parameters related to internal energy

dynamics. Finally, the parameters T1 (Equation 2.2) and nSi (Equation 2.5) affecting
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Si uptake and CSi and M0,F r (Equation 2.10) affecting frustule dynamics also showed

sensitivity. These results are not surprising since cell growth and reproduction require

energy and nutrients and the experiments were set up such that Si was the limiting

nutrient.

Overall the model output was qualitatively close to the data. The model was best

at predicting population dynamics where the average relative error between the model

and the data was at most 25% for each of the three experiments. The DA dynamics

were harder to capture, as it was difficult to fit both the low inital levels of DA and

the high final levels simultaneously for all three experiments. For external silicon, the

model output was closest to the data for experiments A and C, but did not fare as well

in experiment B.

3.1 Biological Data

In a batch experiment, a culture is introduced to a nutrient-containing medium

and allowed to grow undisturbed. Measurements are taken periodically to determine

the levels of biomass and nutrients in the system. In the paper, three separate ex-

periments were performed simultaneously on populations derived from the same algae

strain. Experiment A had an initial Si concentration of 95.3 µmol/l while experiment

B had initial Si concentration 190.5 µmol/l. Experiment C began with 60.9 µmol/l Si,

was allowed to grow undisturbed for 14 days, after which 64 µmol Si was added. Cell

concentration, external Si concentration, chlorophyll a concentration, and domoic acid

levels were measured.

The data for these experiments (Figures A.8 , A.9 and A.10) show some interesting

dynamics, particularly for DA and external Si. The authors state that DA production

occurs in two phases. The first phase occurs as the population growth rate begins to

decline and is characterized by low DA production. The second phase shows higher DA

production and occurs when population growth has almost stopped. The onset of the
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second phase occurs near day 30 in experiment A and day 25 in experiment B. Due to

the addition of Si to the medium in experiment C, the second phase is not reached. The

cells do not appear to switch instantaneously from the first to the second phase, rather

there appears to be a five to ten day adjustment period of slightly increased production

which we will refer to as the transition phase. In addition, there were a few data points

which reflected a decrease in the total domoic acid levels in experiments A and C. Since

DA is a stable compound, it is strange that the total amount in cells and medium would

decrease. No explanation for these points is offered by the authors.

The data for external silicon concentration imply that cells are able to excrete

silicon into the medium. In both experiments A and C, the data fluctuate from decreas-

ing to increasing, while in experiment B, external Si decreases for the first 15 days and

gradually increases for the remaining 30 days. It should be noted that for experiment

B, the error bars for external silicon imply that this constant increase may not be an

accurate representation of the dynamics.

3.2 Sensitivity Analysis

A sensitivity analysis was performed using the external conditions of Experiment

A above as the initial external conditions for the model. Before beginning the sensitivity

analysis, we obtained a parameter set that resulted in model output within 25% of the

population data for experiment A while capturing the high level of DA at the end of the

experiment. This was accomplished by using the original parameter set from Miller [55]

and changing any parameter values that could be obtained from other sources (Table

B.4). This parameter set was further varied to satisfy the criteria mentioned and the

model was allowed to run for 40 days. The output from this parameter set was used as

the basis for the sensitivity analysis. Population level, external Si concentration, and

total DA in the cells and medium was written every 24 minutes resulting in 2400 data

points per variable. The variation from the base was measured by the mean relative
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error:

1

2400

n=2400
∑

n=1

|Db,n − Dp,n|
Db,n

(3.1)

where Db,n is the nth value of the base simulation and Dp,n is the nth value of the

perturbed simulation.

The first set of perturbation experiments was used to determine the parameters

which resulted in the most deviation in population, total DA, and external Si dynamics.

Each of the 62 parameters was varied by ten and fifty percent above and below the

base value for a total 248 simulations. There were five parameters with a mean absolute

deviation in population size and total DA greater than ten percent when perturbed ten

percent: the wait time associated with energy, CE , the photoinhibition index β, the

maximum photosynthetic rate, Pmax, the reference temperature, T1, and the number of

ATP molecules required to produce a protein molecule, kE,Pr. The same parameters

along with the maximum number of frustule molecules fixed per time, M0,F r, resulted

in a deviation greater than fifty percent when perturbed fifty percent. Additionally,

at the ten percent level, all the response variables (population, DA, external Si) were

sensitive to four parameters with a deviation of at least one percent. These were the

initial slope of the photosynthesis irradiance curve (α), the Si wait time (CSii), the

number of transport sites for Si uptake per unit area (nSi), and M0,F r.

Based on these results, a full factorial design varying the five parameters CEi
, β,

Pmax, T1, and kE,Pr by plus and minus twenty percent and plus and minus ten percent

was done to determine which parameters were contributing most to the deviation and

whether there were any important interactions between them. For population size,

total DA, and external Si, the mean absolute error was calculated. These data sets were

analyzed using two way ANOVA with constrained sum of squares.

The population data showed that CE was overwhelmingly responsible for the

variability in the data ( F = 4333.22, p = 0) (Table B.5). Recall that the p-value is the



32

probability that the means of the two samples would differ as they did given that they

were actually the same so that a very small p-value implies that there is almost definitely

a difference in the two means. In most of the simulations where CE was reduced by

twenty percent and several at the ten percent reduction the algae population became

extinct before the end of the simulation, accounting for the disproportionately large

amount of the variability attributed to CE. In order to determine whether there were

other factors influencing population data, several more ANOVA tests were performed.

The first was done omitting CE and showed that the other factors influencing population

are T1 (F = 43.47, p = 0), Pmax, (F = 12.4, p = 0) and the interaction between T1 and

KE,Pr (F = 2.02, p = 0.0096). Secondly, if the simulations that resulted in extinction

were removed from the data set, then T1 (F = 2998.65, p = 0), CE (F = 352.44, p = 0),

and Pmax ( F = 102.1, p = 0) were most influential. Finally, all the simulations where

CE was reduced by twenty percent were removed from the data set, showing similar

results as the original ANOVA (Table B.6). It is not surprising that two of the three

parameters that strongly affected population dynamics, CE and Pmax, were related to

the cell energy dynamics, since energy is required for all cell processes involving growth

and reproduction. The other important parameter, T1, appears because it helps to

determine the rate of nutrient uptake for the cells, which is related to how fast cell

structures can be built.

For domoic acid, the results were simpler since CE did not overwhelm the data

(Table B.7). The most important single factors were T1 (F= 625.6, p = 0), KE,Pr (F =

202.32, p = 0), and CE (F = 162.49, p = 0). The most important interaction excluding

interactions between the three parameters mentioned was Pmax with T1 (F = 65.75, p

= 0). While it is clear that T1 and CE can be important to DA production because

the amount of nutrients available to make it depends on the uptake rate and available

energy, it is not so obvious that DA production should be particularly sensitive to KE,Pr.

However, recall that domoic acid is produced only after anabolism has been performed,
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therefore, the amount of energy used to create protein affects the amount of energy

that will be left for domoic acid production. In addition, the rate of protein production

determines the time spent between protoplasm division and cell division when the cell

has an opportunity to produce large amounts of DA.

The Si data is closely tied to the population data since the population size has

a direct affect on the total amount of Si is taken up from the medium. Therefore, the

statistical analysis of the sensitive parameters was similar to that of the population

data. Since CE overwhelmed the results, the same approach was taken with these data

as with the population data, removing various subsets from the data set to determine

if any other parameters might be driving the system. Again, CE (F = 4296.38, p =

0) and T1 (F = 3576.2, p = 0) were the most important parameters when the analysis

was done on the whole data set. However, in these data, the amount of variability was

more evenly shared by these two parameters. When CE was not considered, Pmax (F =

15.37, p = 0) was somewhat important second to T1 (F = 420.44, p = 0) and the only

significant interaction was between T1 and KE,Pr (F = 2.83, p = 0.0001). These results

are very similar to those obtained for the population data. When the simulations in

which the algae population did not survive were removed from the data set, T1 (F =

85051.67, p = 0), KE,Pr (F = 120.18, p = 0) and CE (F= 93.08, p = 0) accounted

for most of the variability. This is a difference between these data and the population

data. In the population data for this experiment, KE,Pr is the least important single

variable. While the energy required for protein does not determine when the cell divides,

it does help determine the rate at which the cell reaches the stage where protoplasm has

divided, and therefore determines when Si will begin to be quickly incorporated into the

frustule. If this happens earlier, less total Si will be taken up by the cell because it will

not have time to accumulate a large amount in the pool while more will be taken up if

this happens later. The experiment omitting simulations with a twenty percent decrease

in CE showed the same parameters that were important to population dynamics, T1 (F
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= 3020.52, p = 0) and CE (F = 966.8, p = 0), were important to external Si dynamics.

However, T1 had more effect on Si than CE since T1 is directly related to uptake rate.

A second factorial experiment was performed using the same parameters as in

the five factorial experiment with the addition of M0,F r, CSii , and nSi. These three

parameters were chosen because together with α, they showed at least a one percent

deviation in all the response variables. The parameter α was not included in the factorial

experiment because the parameters Pmax and β were already included. Since irradiance

was kept constant, the inclusion of α would not give additional information.

The population data showed three parameters contributing most to the variability

in the data, CE (F = 3068.84, p = 0), M0,F r (F = 2156.16, p = 0) and T1 (F = 673.88,

p = 0) (Table B.10). Population dynamics are very sensitive to M0,F r since the biolog-

ical experiment was constructed so that Si would drive the system and this parameter

determines the rate at which the cells can incorporate Si into frustules(Equation 2.10).

When the simulations in which the population went to extinction were omitted, T1 (F

= 18495.63, p = 0) was the factor that was most responsible for the variability in the

population data, with M0,F r (F = 554.97, p = 0) and CSii (F = 522.27, p = 0) also

contributing. Because CSii , the internal wait time for Si, helps determine the rate of

frustule formation (Equation 2.10), it makes sense that this parameter was important to

population dynamics along with M0,F r. The only interaction not including CE , T1, and

M0,F r which had any importance was Pmax with β (F = 347.36, p = 0 for simulations

excluding extinction), however, this is because both of these parameters appear in the

photosynthesis- irradiance curve (Equation 2.7)

For domoic acid, the addition of three parameters to the original experiment

did not provide new information, implying that the process of DA production was not

sensitive to the parameters related to Si uptake (Table B.12). In the experimental

data, however, there is a clear correlation between Si concentration and DA production.

Therefore, we may conjecture that the correlation of these two quantities may not be



35

directly linked, but may be due to other factors. For example, when the protoplasm

has divided but the new frustules are still being formed, there may be extra energy or

nitrogen available which can not be used for growth during that part of the cell cycle.

The external Si data for the eight parameter factorial experiment seemed to follow

the population data as was the case in the five parameter experiment. Again CE (F =

3316.4 p = 0), M0,F r (F = 1774.26, p = 0) and Pmax (F = 375.8, p = 0) were the most

sensitive parameters (Table B.13). When the simulations resulting in extinction were

removed from the data set, T1 (F = 7089.18, p = 0) had the most effect on external

Si while Pmax (F = 600.52, p = 0) continued to be very influential (Table B.14). It

may seem counterintuitive that external Si dynamics are more sensitive to Pmax than

population dynamics are. This can be explained by the fact that in the biological

experiment, the culture was set up so that Si would force the population dynamics.

Therefore, while energy is not as strong a factor in the rate of population growth, it

strongly affects Si uptake. The amount of energy available from photosynthesis helps

determine how fast the cells reach protoplasm cleavage and thus the length of time

between protoplasm cleavage and cell division. This is the phase when the cells rapidly

take up Si and incorporate it into the frustule. The length of this phase determines

whether or not the cell has the opportunity to accumulate a large internal Si pool.

3.3 Model Validation

Following the sensitivity analysis, the model output was fitted to experimental

data from three batch experiments performed by Pan and coworkers [58]. The model was

calibrated to fit population size, total domoic acid in the cells and medium, and external

Si concentration in experiment A. The goal was to be within 25% of the population data

while capturing the dynamics of domoic acid production late in the experiment when

the rate of production is highest. Since the details of DA production are not well

known, we did not expect to capture perfectly the dynamics of the data associated with
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it. Similarly, a qualitative fit to the external Si data was considered sufficient since

the dynamics of Si uptake and deposition are probably more complex than the model

representation.

The model output was first compared to data from experiment A (Figure A.11).

The model described the population dynamics very well, with an average relative error

of 10.9%. It was weakest in describing the tail of the stationary phase when the data

showed a small increase but the model simulation did not. Upon looking at the mass of

frustule for each cohort, it was determined that another reproduction was imminent in

the model, therefore the model population would eventually achieve the same level as

the experimental population.

For the total DA in the cells and medium, the model was successful in the first

phase of domoic acid production when DA concentration is very low, and at the end

of the experiment when the DA concentration reached its peak. However, the model

is weakest during the transition phase, where it misses several of the data points. It

may be that the cells require some time to adjust to a higher rate of DA production,

which is not a requirement of the model population. If every data point was included in

the error estimation, the average absolute error was 88% while omitting the third and

fourth to last points yielded an average absolute error of 38%, implying that much of

the error lies in those two data points. It should be noted that parameter sets resulting

in outputs with errors below 20% were possible, however, model output with such a low

error did not closely approximate the peak levels at the end of the experiment.

Qualitatively, the model output for external Si was similar to that of the exper-

iment. From the data, one might infer that the cells are releasing some Si into the

medium. The model does not allow for this capability, accounting for the discrepancy

between the monotone decreasing curve of the model output and the experimental data

which is alternatingly decreasing and increasing.

Experiment B was implemented to determine the dynamics when Si was initially
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abundant in the medium (Figure A.12). Again, the population output from the model

was very close to that of the experiment with an average relative error of 24%. In

this experiment, the model was very close to the data at the end of the experiment,

but reached the peak level much earlier than the experimental population did. The

experimental population shows a slower growth rate than the model population over

the period between days eight and twenty. It is possible that discrepancies in the initial

population structure of the model versus the experiments may be responsible for these

differences. Yet another possibility is that at these high population numbers, the cells

in the experiment were affected by self-shading or other crowding factors which are not

taken into account by the model.

Domoic acid levels in the model output were lower than the data in the final

days of this experiment, in contrast to experiment A. However, the early phase of DA

production was modelled well. Note that the model again had difficulty predicting the

data in the transition phase. The average absolute error over the entire data set is

61% while omitting the transition points (fourth and fifth from last) yields an error

of 33%. The lower model values at the end of the experiment are likely due to the

differences between model and experimental populations mentioned above. Since the

model population slows down later than the experimental population, it does not have

time to produce as much DA as the experimental population.

The Si dynamics for experiment B revealed the most difference between model

output and data as compared with all other experiments. The experimental population

rapidly absorbed Si from the medium at the outset of the experiment, while appearing

to release large amounts towards the end. It should be noted, however, that error bars

for the experimental data imply that the actual amount of Si in the medium may have

been much closer to zero than was measured. The low initial uptake by the model

population as compared with the experimental one may occur because in the biological

system, Si uptake usually occurs when cells are preparing to divide, while in the model,
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the uptake is spread over the whole cycle. Therefore, if the experimental cells were in

that phase when the culture was begun, they would be ready to transport large amounts

of Si.

Experiment C had slightly more complex dynamics than A and B because of

the addition of Si to the medium on day 14. Nevertheless, the model was able to

capture much of the system dynamics (Figure A.13). Model output was very close to

the population data at the beginning of the experiment and following the addition of Si

to the medium. However, the model population grew much slower than the experimental

population in the period immediately preceding the addition of Si to the medium. This

may be attributed to differences in the model and experimental initial populations, or

to the fact that the model overestimates Si limitation for low external concentrations of

Si. The mean absolute error between the data and the model output was 23%.

For domoic acid production, the model underestimated the production throughout

the experiment. In this experiment, cells never reach the second phase of DA production

because the algae population is given Si at about the time the second phase would

begin and they never make the transition to higher rates of production. Although it

underestimates the amount of DA, the model curve is qualitatively similar to the data

set. The model also underestimates the population data particularly between days ten

and thirty, when DA production rate seems to increase slightly. This could account for

the lower model values of total DA concentration.

Although the external Si dynamics showed a good qualitative fit to the data for

this experiment, the period following Si addition revealed a pattern similar to that of

experiment A. Silicate is most likely being excreted to some extent by the experimental

cells while the model does not yet have this capability. The initial dynamics mirror the

problem from experiment B where a large amount of Si is taken up immediately in the

experiment but the same does not happen in the model. Again, this is likely due to

differences in the two initial population structures.
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3.4 Conclusions

The first set of simulations in the sensitivity analysis showed that parameters

related to energy availability and Si uptake and deposition are most important to the

dynamics of the population, DA and external Si. The results of the first factorial

experiment were that CE , T1, Pmax, and KE,Pr are most responsible for the observed

variability in the population and Si data. CE was particularly sensitive because it can

cause the cells to die and the population to go to extinction. While energy related

parameters had a greater affect on population dynamics than those related to uptake,

Si data were more sensitive to the uptake parameters. The population and external

Si data were closely related; therefore, we can infer that population size determines

potential Si uptake and, in turn, external Si concentration. In the second factorial

experiment, M0,F r and CSii appeared to influence population and Si dynamics more

than Pmax and KE,Pr. This agrees with the fact that the experiments were set up to

model a population whose dynamics are determined by the availability of Si. Domoic

acid was affected by CE, T1, and KE,Pr in both of the factorial experiments. It is

important that a direct link between Si parameters and DA was not established. This

could mean that the correlation between DA production and external Si concentration

may not be directly causal, but indirectly due to the dynamics of cell reproduction and

the length of time spent in the phase between protoplasm cleavage and cell division.

Comparing the model outputs to actual data revealed some of the strengths and

weaknesses of the model. The model was strongest in predicting population dynamics

for various levels of external Si concentrations, with the possible exception of very

low concentrations. For DA in the first and second phase, the model performed well,

particularly in experiment A. However, capturing the dynamics of the transition between

these two phases was one of the weaknesses of the model. Another model shortfall

appeared when the model output was compared to the external Si dynamics. The fact
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that the present form of the model does not allow for excretion of Si from the cells

does not appear realistic in light of the experimental data which show the external Si

concentration alternately increasing and decreasing.

The comparisons of model output to data also delineate the importance of the

initial population structure. In experiment B, the model population grew faster than the

experimental one in the period between days ten and twenty. This could be because the

cells in the initial model population contained a healthy internal Si pool and were almost

ready to divide. In addition, the initial external Si drops suddenly in the experimental

data while a much more gradual decline was seen in the model data. If the experimental

population had already reached or was close to protoplasm cleavage, a sudden uptake

of Si when it became available would not be surprising because the cells would be ready

to transport large amounts of Si and create the frustules of the daughter cells.



Chapter 4

Batch Culture Experiments Revisited

We hypothesize that Pseudo-nitzschia cells are able to adapt to low levels of ex-

ternal silicon by increasing their capacity for Si transport. In addition, we propose that

the physiological changes required to increase uptake efficiency are positively related

to domoic acid production. In order to test these hypotheses, the parameter λ0 in the

expression for L(Sie) (Equation 2.5) was chosen to be positive, thereby including a

slight increase in Si uptake at low levels of Si and a correlation of the maximum DA

production with L(Sie). Model output was once again compared to the three batch

experiments described in Chapter 3 and improvements in the fit to total DA in cells

and medium were seen. In particular, the transition period between the first and second

phases of production was better represented by this form of the model.

The parameter set used for this chapter is described in Table B.17. The initial

populaiton structure of the model was the same as that in the previous chapter.

4.1 Experiment A: Low initial external Si

Population dynamics were relatively unaffected by changes made to the model,

and the mean relative error between model and data was 13.8% (Figure A.14). It is

important to notice that the population grew much faster between days 7 and 10 and

reached a higher final concentration than the population in the previous version of the

model. This is due to the increased ability of the cells to transport Si even when the
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concentration is very low. External Si dynamics were once again qualitatively similar

to the data, although some accuracy was lost in days zero through five while some was

gained between days five and twenty-five.

For DA dynamics, the improvement was significant. The average absolute error

between model output and data decreased from 88% to 60% over the whole time series

and from 38% to 35% when the transition points were left out. This version of the

model was better able to capture the transition from the first phase to the second phase

because the second phase is modeled using a variable maximum rate of production.

Thus, production increases as Si uptake efficiency increases and it is possible to attain

the high levels of DA observed at the end of the experiment without sacrificing accuracy

during periods of lower production. This is in contrast to the previous form of the model,

where either the first or the second phase could be simulated individually, but both could

not be accurately represented simultaneously.

4.2 Experiment B

Model performance was most improved in Experiment B which provided high

initial Si (Figure A.15). The error between the model population levels and the data

decreased from 24% to 19%. The model output was especially improved in the first

fifteen days of the experiment, where previously the population had been overestimated.

As in experiment A, the final model population size was larger than with the previous

version of the model, probably due to the increased ability for Si uptake.

External Si dynamics continued to be a challenge for this experiment. In partic-

ular, the experimental data show a large drop in external Si on day one, followed by a

more gradual decrease. The model did not do well in capturing these dynamics, which

may again be attributed to differences between the initial populations in the experiment

and in the model. In addition, while the data show an increase in external Si after day

15, the model cells do not currently have the ability to excrete Si, therefore, external Si
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can at best be a monotone decreasing curve.

The most drastic improvement over the previous version of the model was attained

in the DA dynamics for this experiment. The overall average relative error in the data

decreased from 61% to 36% while there was a slight increase in the error excluding

the transition points from 33% to 35%. Qualitatively, the model describes the data

very well, showing a long first phase of low DA production followed by a transition

phase and the second phase of high production. The final amount of DA attained was

approximately 60 µg/l which is a significant improvement over the previous version of

the model that reached a final level of approximately 40 µg/l.

4.3 Experiment C

For experiment C there was not much improvement in the model performance

(Figure A.16). This experiment is the most difficult to model because the batch culture

is perturbed on day fourteen when extra Si is added. The model underestimated the

population size between days five and fourteen even more than was observed in the

previous version. This may be due to differences in initial populations or because the

model overestimates Si limitation at moderately low levels, before uptake efficiency is

increased. Once Si was added, the model population began to catch up to the data and

the final population levels were almost the same.

The external Si dynamics were improved over the previous version for the period

following addition of Si, but were slightly worse between days zero and fourteen. Similar

to experiment B, the model did not capture the large initial drop in external Si, possibly

due to discrepancies between the initial populations. In addition, the experimental Si

dynamics include excretion, which the model does not.

Likely due to the low population levels in the model, DA production was very

low compared to the actual data. As with the previous version of the model, DA pro-

duction was underestimated but qualitatively similar in dynamics to the experimental
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population. There is a slight increase in production which levels off after Si is added.

As Si reaches low levels again, DA production increases.

4.4 Conclusions

The ability of algae cells to adapt to low levels of nutrient has been documented

for several species [17, 18, 35, 44, 73]. We hypothesize that the same is true of Pseudo-

nitzschia species in particular with respect to Si. In addition, the literature on DA pro-

duction implies that it is negatively correlated with external Si values [58, 59]. Therefore,

it is possible that the physiological changes required to increase Si transport efficiency

may cause changes in the cell that increase DA production. This was implemented in

the model by including the L(Sie) term in the expression for Si uptake (Equation 2.5)

and also in maximum DA production (Equation 2.19). As a result, the model was better

able to predict the DA dynamics throughout experiments A and B including the first

and second phases of DA production and the transition phase between them.

In particular, when the second model implementation was used, the high exper-

imental levels of DA in both experiments were modeled more accurately. These high

levels were achieved without sacrificing accuracy at the beginning of the experiment

when production is low. Therefore, we see that the modified model DA curve is quali-

tatively and quantitatively a better fit to the experimental data. These results indicate

it may be possible that the cellular mechanism required to increase Si transport may

be linked to the mechanism for DA production. This is one possible explanation for

the correlation of DA with external Si levels, and for the fact that low levels of DA are

produced consistently, but increase greatly under Si limitation.



Chapter 5

Chemostat Experiments and Nutrient Limitation

In this chapter the model is used to simulate data from continuous culture ex-

periments and to develop criteria that govern DA production. Continuous culture ex-

periments were performed in a chemostat, a device which allows inflow of fresh medium

and outflow of mixed medium and cells. The batch and chemostat culture experiments

indicate that the strain used for the chemostat experiments was better able to transport

Si and other nutrients, had a higher photosynthetic rate and had a higher rate of DA

production than that in the batch culture. Hence, this required the use of a modified

parameter set from those used in the batch model calibration experiments. This was

also verified by personal communication (Pan, 2002). In addition, the chemostat strain

was able to increase Si transport efficiency to a greater degree and at a higher external

Si concentration. Simulations were then performed employing a constant flow rate while

increasing external Si or decreasing external N.

5.1 Biological Data

In order to study the population and DA production dynamics of Pseudo-nitzschia

multiseries, Pan and coworkers performed a series of chemostat experiments with vary-

ing growth rates at two external Si concentrations [59]. An experiment typically de-

scribes the final steady-state of the system, which includes equilibrium population den-

sity and external nutrient concentrations. In this set of experiments, the same type
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of medium was used as in the batch culture; however, the strain of Pseudo-nitzschia

multiseries had been in culture for a shorter period of time, resulting in higher rates of

DA production.

In Experiment 1, the concentration of Si in the medium was set at 165.4 µmol/l.

The medium flow rate was varied between 0.10 and 0.70 per day. The data for equilib-

rium external Si concentration appeared to be positively linearly correlated with growth

rate, while domoic acid showed a negative exponential relationship to growth rate. The

authors fit curves to the data for external Si, pg DA/cell and µg DA/l in filtrate and

cells. We will compare the model output to these curves (Figure A.17).

The concentration of Si in the medium for Experiment 2 was set at 56.2 µmol/l.

In this experiment the cells were severely Si limited and showed very high levels of DA

production. At flow rates below 0.20 d−1, external Si was negatively correlated with

growth rate, which the authors attributed to dissolution of Si from the cell walls of the

diatoms. When the flow rate was higher than 0.20 d−1, external Si levels remained

unchanged indicating the equilibrium populations were Si limited. The data for pg

DA/cell showed an increase until the flow rate is 0.20 d−1 followed by a decrease similar

in pattern to the data in Experiment 1, while the total DA data appeared to also be a

decreasing exponential function of growth rate. The data suggest that below the 0.20

d−1 flow rate, the cells were under severe stress, and were probably ceasing physiological

processes. Because the model does not currently include the capability for the cell walls

to dissolve or for processes to slowly cease, model output was compared to the data

where the flow rates were 0.20 d−1 or higher.

5.2 Model Simulations

For Experiment 1, model simulations were done at 0.1 intervals starting with a

flow rate of 0.2 d−1 and ending with 0.6 d−1. Figure A.18 shows time series data for

each of the flow rates. The horizontal lines represent the equilibrium value as predicted
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by the fitted curves in the paper by Pan and coworkers.

Table B.15 shows the mean model output value for total DA, cellular DA, and

external Si for each flow rate in experiment 1 compared with fits to experimental data

performed in Pan et. al. [59]. The external Si model predictions are within 25% of

the data. At higher flow rates when the cells are growing rapidly, the error improves to

less than 15%. The model underestimates the cells’ ability to transport Si, particularly

at lower flow rates, which agrees with the results in the batch culture Experiment C,

where the model population did not grow as fast as the experimental one.

For DA levels per cell the model is within 16.7% of the data with the exception of

the experiment performed at flow rate 0.6d−1 where the relative error is large. However,

it is important to note that the model output is within 0.04 of the data, therefore the

seemingly large error is due to the very low levels of DA present. The results are similar

for total DA in cells and medium, where the error is within 35.6% excepting the higher

error at the 0.6d−1 flow rate. The main concern is to model the dangerous high levels

of DA that may occur, and the data suggest that the model successfully accomplishes

this goal.

Simulations for Experiment 2 were performed at growth rates of 0.2 d−1, 0.3 d−1

and 0.4 d−1 (Figure A.19). It should be noted that all the parameter values were kept

constant between Experiment 1 and 2 except for the amount of frustule required for

reproduction. Cells in Experiment 2 were allowed to have 35% less Si in their frustules

than those of Experiment 1. This was necessary for the population to be able to persist

at a growth rate of 0.4 d−1. This is a justifiable change, since under Si stress diatoms

may use less Si to form their frustules.

For this experiment, the errors between model output and data were higher than

in Experiment 1 (Table B.16). For the equilibrium values of DA/cell the highest error

was 41.5%, and for total DA the highest error was 57.8%. It should be noted, however,

that model predictions for DA/cell were at worst 2.2 pg from the actual data. The
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error for total DA implies the model population was larger than the experimental one,

resulting in an overestimation of the total DA in the system. For external Si the relative

errors are extremely high. However, the model output is at worst within 6 µmoles of

the data. Considering the range of Si values from almost 100 µmoles/l to 2 µmoles/l,

the model does well to be so close to levels ranging over 2 orders of magnitude.

5.3 Comparison of Batch and Chemostat culture strains

The sets of batch and chemostat experiments were performed on two different

strains of Pseudo-nitzschia multiseries. The strain used for the batch culture experi-

ments had been in culture for a long period of time, resulting in a loss of vitality and

particularly a loss of ability to produce DA. Therefore, two separate parameter sets were

required to model the two sets of experiments. Differences in these parameter sets may

reveal the physiological differences between the algae strains. It is important to note,

however, that since both sets of experiments were performed to explore Si limitation,

parameters related to other nutrients did not change in the model. This should not

be taken to imply that there is no difference between the two strains’ ability to trans-

port N or P, but simply that this aspect of cell physiology was not explored in these

experiments.

The main differences in the parameter sets are between parameters related to

uptake. For all nutrients, the value of the parameter S (Equation 2.2), the velocity

at which a nutrient is passed through the cell membrane at the reference temperature,

for the chemostat experiments was approximately four times that of the batch exper-

iments. Therefore the “younger” chemostat cells were able to transport nutrient from

the medium into the cell much faster than those in the batch culture. The parameters

specific to Si uptake showed the same trend. The number of transport sites for Si, nSi,e

(Equation 2.5) in the chemostat cells used was twice that of the batch cells resulting

in a higher maximum rate of uptake. The differences in the proportionality constant
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cSi result in a higher half saturation constant for the chemostat culture than for the

batch culture. Thus, while the strain used for the chemostat experiments has a higher

maximum uptake rate, it reaches that rate slower than the batch culture will reach its

maximum rate of uptake. Regardless of this difference, the uptake rate of Si over the

entire experimental range is still higher for the chemostat strain.

The strain used for the chemostat model also shows a greater ability to increase

the efficiency of Si uptake when Si is limiting (Figure A.20). The chemostat strain begins

increasing uptake efficiency at approximately 25 µmols external Si/L while the batch

strain does so only at approximately 8 µmols external Si/L. In addition, the strain used

in the chemostat shows a greater overall increase in efficiency at low levels of external

Si, although the batch culture strain is able to increase efficiency more dramatically at

low levels of external Si.

In addition to differences in uptake there were a few more physiological differences

between the two strains. The chemostat strain had a higher maximum photosynthetic

rate than the batch culture strain, but there were no changes in the other photosynthesis

parameters. The maximum rate of DA production was approximately 17 times higher for

the chemostat strain. This may seem unreasonable at first, but such a large difference is

reflected in the data for the two experiments. Finally, the maximum rate of production

for protein was approximately 50% higher for the cells in the chemostat. Since the strain

used for the chemostat experiments was chosen because it would be more vigorous, these

differences are not surprising.

There were some parameter differences that are difficult to explain biologically.

The chemostat cells had a lower maximum production rate of frustule than the batch

cells and the wait times for nutrients were also much larger than in the batch culture.

Intuitively, the opposite should be true in both cases. This may indicate a weakness

of the model. However, simulations where the wait time was decreased resulted in the

population going to extinction because the cells became energy deficient. Therefore,
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these differences may be due to the fact that when the cell has an abundance of available

nutrients, it doesn’t use them as quickly so that energy is not depleted too rapidly.

5.4 Toxin production simulations

Given that the model has been calibrated to fit experimental data, it is a log-

ical next step to use the model to characterize nutrient regimes likely to cause toxin

production, while examining internal cell physiology to gain insight into the internal

factors that may be governing production. Thus, simulations using a single cohort were

performed so that all cells would be synchronized and their physiological characteristics

would be easy to discern. Domoic acid per cell was used as the response variable so that

increases or decreases in DA concentration due to population size would be ruled out.

The external conditions in the model were made to mimic chemostat Experiment

2 with a flow rate of 20%day−1, which represented the highest toxin production of all

the experiments performed. Two sets of simulation experiments were done. In the first

set of experiments, the concentration of Si in the medium was increased gradually while

in the second set the external concentration of N was decreased gradually. Thus, we can

investigate the situation where Si was not limiting, in addition to the situation where

both Si and N were limiting. The biological data suggest that in both these scenarios,

toxin production is low.

In the base case where external Si was set at 56.2 µmol/l as in the original

experiment, the DA per cell increased rapidly and then stabilized at levels between four

and eight pg per cell. The level fluctuates between these two values since at each cell

division, all internal components of the cell including DA are halved (Figure A.21).

Throughout this simulation, Si is obviously a limiting factor, as demonstrated by the

very low levels of Si available in the cells’ nutrient pool, while the model indicates that

the limiting factor for protein production is energy. Thus, cell growth is not limited by

either N or P.



51

A gradual increase in Si in the medium produced the expected result of lowering

toxin production. DA per cell did not change as the Si concentration was raised to 1375

µmol per liter. However, at 1405 µmol per liter, the concentration of DA per cell began

to show a cyclical pattern which was observed at Si levels up to 1465 µmol/l. The cycle

is characterized by periods of high DA production followed by periods where almost

no production occurs. As Si concentration increases, the period of high production

becomes shorter (Figure A.22). The periods of low production are characterized by

N limited protein production, while the periods of high production are energy limited

as in the simulations with low levels of Si. This implies that Si is no longer limiting

during the periods of high DA production and cell growth and division is controlled

by the amount of N available for protein production. Figure A.23 shows one example

of a simulation where DA/cell dynamics are cyclical and indicate periods of N limited

protein production corresponding to low DA production.

When Si concentrations are raised to 1500 µmols or higher, DA/per cell stabilizes

at levels between 0.01 pg/cell and 0.02 pg/cell after an initial spike of high produc-

tion (Figure A.24). The internal dynamics of the cell indicate that the cell growth and

division are now exclusively N limited, so that the cell no longer lingers in the phase be-

tween protoplasm cleavage and division. In addition, the N pool is sufficiently depleted

by protein production leaving little available N to build DA molecules.

The simulations where external N concentration was lowered showed similar re-

sults to those above. Initially there were 1765 µmols N /L in the medium. The DA

dynamics remain the same until external N reaches 65 µmol/L. At this point, the same

type of cyclical behavior is observed, with periods of high DA production followed by

periods of low production. As N was further lowered, the periods of high production

became shorter, and the peak levels of DA/cell decreased (Figure A.25). The internal

physiology of the cell again indicated that times of low production were characterized

by N limitation (Figure A.26). Finally, as N became the sole limiting nutrient, DA
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production was very low even though the cells were also in a medium of low Si concen-

tration.

The results of these simulations indicate that N plays as important a role as Si

in DA production. When cells are in an Si rich environment, they produce very little

DA, possibly because the cells are growing rapidly enough so that there is no excess N

to be used in the formation of DA molecules. On the other hand, when Si is limiting

we have two scenarios. Either there is abundant N in the medium and high levels of

DA production are possible, or the cells can also be starved for N in which case DA

production will be low. Therefore it is necessary to have the combination of low Si and

high N in order to get high levels of DA production. In addition, this may imply that

the production of DA can be a mechanism to rid the cell of excess N.

Of particular interest are the nutrient regimes where the cells are alternately Si

and N limited, which are characterized by cyclic production rates. This is a phenomenon

not likely to be observed in nature since the algae population will not be composed of

identical cells. Thus, the model gives us some insight as to the possibility that there are

nutrient regimes which in nature may or may not produce high levels of DA, depending

on the population structure of the algae population.

5.5 Conclusions

The model was successful at describing the dynamics of the chemostat experi-

ments performed by Pan and coworkers. This, combined with the results for the batch

cultures in Chapter 4, provides a measure of confidence in using the model as a tool

to make inferences about the biological condition of the cells as they grow and produce

domoic acid in different environmental situations.

The two different strains used in the batch and chemostat cultures likely differed

in their ability to take up nutrients, photosynthesize, and produce DA. The parameter

differences required in the model to simulate both sets of experiments imply that overall
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nutrient uptake is higher for the newer strain used in the chemostat experiments, likely

due to a more efficient mechanism for transport of nutrients through the cell membrane.

In addition, the chemostat culture had more active uptake sites for Si as well as an

enhanced ability to adapt to low Si levels. It can not be determined whether there

are differences in the cells’ ability to take up other nutrients, since those data were

not available. Higher maximum photosynthetic rate and maximum DA production rate

were the final parameters that made the difference between the performance of the cells

in the batch culture and those of the chemostat culture.

The simulations performed to investigate DA production showed that both N and

Si play an important role in DA production. Simulations where both Si and N were

limiting produced very little DA, while those under exclusive Si limitation showed high

levels of production. In addition, when the shift from Si to N limitation occurred, DA

production was very low. Particularly telling were the simulations where the limitation

alternated between Si and N. These simulations showed that during periods of N limi-

tation, DA production was low, while high periods of production coincided with periods

of Si limitation. It has also been shown in experiments that cells limited by P produce

higher levels of DA. Therefore, not only does DA production require N, it may be a

mechanism for the cell to rid itself of excess N.



Chapter 6

Summary of Results and Future Directions

The model presented in this work shows promise as a tool for biologists and

modelers alike. It is contemporary in formulation by employing stoichiometry and in

application to harmful algae blooms. Since the sensitivity analysis results appeared

to agree with the expectations for the experiment being modeled and model outputs

matched two sets of experiments well, we are justified in using the model as a tool to

gain insight into the dynamics and physiology of DA production.

The sensitivity analysis results showed that the parameters most affecting popu-

lation dynamics were energy and Si related. Because the experiments being reproduced

in the simulations were designed to characterize dynamics under Si limited conditions,

this is a logical result. In addition, DA appeared to be related to parameters determin-

ing the length of time the cell remained in the phase immediately preceding division

when the frustules of the daughter cells are built.

When compared with experimental data from batch experiments, the model re-

sults appeared to describe the dynamics of population growth and DA production quan-

titatively well. The dynamics of external Si were more difficult to capture, but qualita-

tively, the model was adequate. Results for DA production were dramatically improved

when the model cells were given the capability to adapt to low levels of external Si by

increasing their uptake efficiency. When the maximum rate of DA production was also

related to Si transport efficiency, the model results captured both the high levels of DA
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observed at the end of each experiment, and the low levels of production associated

with the early stages of each experiment. This may imply that a high affinity transport

system takes effect at low levels of external Si which is activated by a genetic or phys-

iological switch. This switch can also be responsible for increased DA production by

the cell. Alternatively, there may be other physiological changes in the cell associated

with increased Si transport efficiency which increase DA production. This hypothesis

could be tested experimentally by determining whether or not Pseudo-nitzschia multi-

series has the capapbility of activating a high-affinity transport system. If it does have

this capability, then DA production when the system is active can be compared to Da

production when it is not active to determine whether there is a link between the two.

The model may also be used to gain insight into the differences between two

strains of algae, as was done in Chapter 5. Two different strains were used in the

batch and chemostat experiments, therefore two different parameter sets were required

to accurately model the biological data. The differences between these two data sets

reveal that the older strains may lose some of their ability to take up nutrients, resulting

in a less vigorously growing population. In addition, they may also have more difficulty

adapting to low nutrient levels by increasing transport efficiency in periods of nutrient

limitation. The parameters imply that this is true of Si uptake dynamics, but we

cannot make a conjecture about N and P uptake since data for situations in which those

nutrients were limiting were not available. The other parameter differences reveal that

older strains have lower maximum photosynthetic rates and maximum DA production

rates than fresher ones. Again, these hypotheses are testable in the laboratory by

comparing uptake and photosynthetic rates for two strains, one that has been in culture

for a long period of time, and one that has not.

Finally, we have demonstrated that available N is an important factor in DA pro-

duction (Table B.18). Simulations that were Si limited, but had abundant N, produced

high levels of DA, while in the absence of N, DA production was very low. This is due
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to the fact that the cell does not have excess N with which to construct DA molecules.

On the other hand, as external Si increases, DA production begins to decrease when

N begins to become the limiting nutrient to cell growth and division. This may imply

that the cells produce DA as a mechanism for removal of excess N. In addition, there

are some interesting nutrient regimes where the cells can alternate between being N and

Si limited. In the former, little DA is produced, while more is produced in the latter.

It appears that the switch between N and Si limitation may be yet another factor that

turns on DA production.

6.1 Future Directions

The possibilites for future research and improvements to the model are many.

First, some improvements can be made to the model in order to better describe the

Pseudo-nitzschia species and its toxin production. Second, model simulations that in-

clude factors such as P limitation, temperature, and light could be performed to further

investigate population and DA dynamics. In addition, the approach could be adapted

to other toxic algae species.

While nutrient-uptake dynamics seem to be adequate, the model lacks a mecha-

nism for the excretion of Si or its dissolution from the frustule back into the environment.

One of the weak points of the model conclusions was the high error observed between

model output and external Si data for batch culture. This was largely due to the fact

that the data showed periods where the external Si concentration increased, but the

model did not afford that possibility. Also it would be illustrative to compare model

outputs to experiments performed under P limitation. Currently, all biological data

was based on Si limitation, so that parameters affecting P and N were not sensitive and

therefore not fully explored. Continuing to experiment with model outputs and com-

paring them to biological data may result in more accurate parameter values for the

model. This would constitute another step toward making the model more biologically
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realistic.

With these goals accomplished, it would then be possible to more fully investigate

nutrient regimes likely to cause high levels of DA production. In addition, DA produc-

tion due to P limitation could be further explored. Finally, it would be interesting to do

long term simulations to explore the effect of sexual reproduction on toxin production

as well as size distribution of the population. This may lead to hypotheses surrounding

the observation that smaller cells tend to produce less DA than younger, larger cells.

Another step towards greater understanding of DA production would be the cou-

pling of the existing algae model with a bacterial model. The symbiotic relationship

between plants and bacteria is well documented [64], and in the case of Pseudo-nitzshia

species it has been demonstrated in the laboratory that cells produce much more DA in

the presence of their associated bacteria than when the bacteria are removed from the

culture [4, 5].

Currently the model is a good tool for simulations describing laboratory exper-

iments. However, in order to model natural populations it would require that spatial

heterogeneity be incorporated. It would be useful to couple the model with a physical

model that described the currents, shear and upwelling occurring in a natural environ-

ment.

Finally, minor changes are required to adapt the model to other toxin-producing

algae species. This would serve at least two purposes. The first would be to imitate the

types of simulations done here on Pseudo-nitzschia species in an attempt to characterize

the driving forces of population and toxin production dynamics for other species. Sec-

ondly, it would be interesting if certain parallel behaviors could be discerned in order

to shed light on the problem of toxin-producing algae.
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line) and without (solid line) photoinhibition. Parameter values for this graph are
Pmax = 8.0 × 10−3, α = 5.0 × 10−5, and β = 2.8 × 10−6
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Figure A.8: Data from batch Experiment A, recreated from Pan et al. [58]. Graph A
shows cell concentration, Graph B shows dissolved inorganic silicate, Graph C shows
particulate Si in the medium and in the cells, Graph D shows chlorophyll a concentra-
tion, and Graph E shows domoic acid concentration in the cells, in the medium, and
in total. Error bars represent one standard deviation. If there is no error bar, the
standard deviation is smaller than the symbol. In graph A, the curve represents a fitted
Gompertz model. Arrows in E show the onset of stage 1 and stage 2 of DA production.
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Figure A.9: Data from batch Experiment B, recreated from Pan et al. [58]. Description
as in Figure A.8
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Figure A.10: Data from batch Experiment C, recreated from Pan et al. [58]. Note the
addition of silicate on day 14. Description as in Figure A.8.
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Figure A.11: Experimental data and model output for experiment A: Medium Si con-
centration
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Figure A.12: Experimental data and model output for experiment B: High Si concen-
tration
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Figure A.13: Experimental data and model output for experiment C: Perturbed batch
experiment. Si added on day 14.
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Figure A.14: Experimental data and model output for Experiment A: Low initial ex-
ternal Si concentration
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Figure A.15: Experimental data and model output for experiment B: High initial ex-
ternal SI concentration
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Figure A.16: Experimental data and model output for experiment C: Perturbed batch
experiment. Si added on day 14
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Figure A.17: Data from chemostat experiments 1 (left) and 2. Graph A shows total
DA in the system, DA in the cells, and DA in the medium with respect to growth
rate. Graph B shows internal cellular DA with respect to growth rate. Graph C shows
external Si concentration with respect to growth rate. Recreated from Pan et al., [59].
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Figure A.18: Model results for chemostat Experiment 1, time series data. Solid lines
show data. The model is within 24.7% of Si data. For flow rates 0.2-0.5d−1, total DA
and DA per cell are within 35.6% of the data and 16.7% of the data, respectively. For
the 0.6d−1 flow rate, model output is within 0.035 pg of the data for DA/cell and 1.6
µg of the total DA.
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Figure A.19: Model results for chemostat Experiment 2, time series data. Solid lines
show data. Total DA indicates an overestimation of the algae population by the model.
DA/cell is at worst 2.5 pg from the actual data.
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Figure A.20: Efficiency increase curves as a function of external Si for batch (solid line)
and chemostat (dashed line) model parameter sets.
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Figure A.21: DA/cell for chemostat Experiment 2 with flow rate 20% day−1.
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Figure A.22: DA/cell, increased Si. Solid line is 1405 µmol/L Si, dashed is 1465 µmol/L
Si.
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Figure A.23: DA/cell, external Si 1465 µmol/L. Sections of x axis in bold denote periods
of N limitation.
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Figure A.24: DA/cell, external Si 1500 µmol. Production is low after an initial spike.
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Figure A.25: DA/cell for flow rate 20%day−1. Solid line is 65 µmol N/L , dashed is 61
µmol N/L.
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Figure A.26: DA/cell for flow rate 20%day−1, external N 61 µmol/L. Sections of x axis
in bold denote periods of N limitation.
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Figure A.27: DA/cell for flow rate 20%day−1, external N 60 µmol. Production is low
after an initial spike.
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Table B.2: Model Variables

Variable Description Units

Ne External nitrogen concentration µmols/cm3

Pe External phosphorus concentration µmols/cm3

Se External silicon concentration µmols/cm3

DAe External DA concentration µmols/cm3

Ni Internal nitrogen pool µmols

Pi Internal phosphorus pool µmols

E Internal ATP pool µmols

SIi Internal silicon pool µmols

mPr Mass of protein µmols

mPs Mass of polysaccharide µmols

mLp Mass of lipid µmols

mFr Mass of frustule µmols

mDa Domoic acid pool µmols

SA Surface Area cm2

V Volume cm3

I Irradiance [µmolm−2s−1]−1

δ() Cell density cells/liter

Z Grazer density #/m3

T Temperature

v(T ) Transport velocity µmols cm s−1
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Table B.3: Model Parameters

Name Description Units

Uptake Parameters

a Cell wall thickness cm

cφe
proportionality constant for external substance φ s/cm3

nφe
density of transport sites for external substance φ cm−2

cφi
inhibition of internal concentration of φ on uptake rate nd

Temperature Dependence Parameters

S Rate constant µmols cm s−1

TA Arrhenius temperature degrees Kelvin

T1 Chosen reference temperature degrees Kelvin

Surface and Volume Parameters

σPs Molecular density of a polysaccharide µmols/cm3

σLp Molecular density of a lipid µmols/cm3

σPr Molecular density of a protein µmols/cm3

Photosynthesis Parameters

Pmax Maximum photosynthetic rate µmolC
µmolCbiomass s

α Initial slope of photosynthesis-irradiance curve µmolCµmolm2s
µmolCbiomass s

β Photoinhibition index µmolCµmolm2s
µmolCbiomass s

Anabolism and Catabolism Parameters

Cφi
Wait time for one molecule of substance φi s

kφi,φs
Number of atoms of substance φi per one atom

of carbon in substance φs

Im,φs
Building time for one molecule of substance φS s

continued on next page
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Table B.3 continued

Name Description Units

kφs,0 Maximum catabolic rate for substance φS µmols/s

kφs,1 Catabolic constant nd

kφs,2 Catabolic constant nd

kφs,3 Catabolic constant µmuls/s

m0,φs
Maximum number of φs molecules fixed per time

Energy Flux Parameters

M0 Maintenance cost s−1µmol−1

jC Fraction of carbon pool respired per second s−1

Reproduction Parameters

l Proportion of biomass lost from smaller daughter cell nd

mPr,Tr Mass of protein which triggers gamete production µmols

Grazer Parameters

Mi Maximum ingestion rate for grazer s−1

Ae Assimilation efficiency of grazer nd

κ Half saturation constant for grazer feeding cells/l

θ Mortality rate for grazer s−1
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Table B.4: Base model parameter values for sensitivity anal-

ysis. Parameters not referenced were taken from Miller [55]

Parameter Description Value

Uptake

a Cell wall thickness 5.000e-6 [54]

cN Proportionality constant for external N 5.100e4 [67, 11]

cOP Proportionality constant for external OP 1.700e2 [21]

csi Proportionality constant for external Si 12.40e7 [11]

cN,i Inhibition of uptake rate of N by 1.000e-4

internal pool concentration of N

cOP,i Inhibition of uptake rate of OP by 9.500e-3

internal pool concentration of OP

cSii Inhibition of uptake rate of Si by 1.000e-2

internal pool concentration of Si

nNe Density of transport sites for N uptake 9.000e5 [67, 11]

nOP,e Density of transport sites for OP uptake 1.100e2 [21]

nSi,e Density of transport sites for Si uptake 2.000e3 [11]

λ0 Maximum increase in uptake efficiency 0.000

for Si

ρ Decrease in uptake efficiency per unit 0.000

external Si

Temperature Dependence

S Rate constant 2.160e-10 [67]

TA Arrhenius temperature 8488 [67]

continued on next page
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Table B.4 continued

Parameter Description Value

T1 Chosen reference temperature 280.0 [67]

Surface and Volume

σPs Molecular density of a polysaccharide 2.600e-10

σLp Molecular density of a lipid 2.000e-10

σPr Molecular density of a protein 1.250e-10

Photosynthesis

Pmax Maximum photosynthetic rate 1.200e-2 [62]

α Initial slope of 5.000e-5 [62]

photosynthesis-irradiance curve

β Photoinhibition index 6.000e-5 [62]

Energy Fluxes

M0 Maintenance cost 2.200e-18

jC Fraction of carbon pool respired per second 1.000e-4

Anabolism and Catabolism

CCi
Wait time for one molecule of C 2.000e-6

CN,i Wait time for one molecule of N 2.000e-6

CPi
Wait time for one molecule of P 2.000e-6

CEi
Wait time for one molecule of ATP 16.50e-6

CSii Wait time for one molecule of Si 2.000e-6

kN,Pr Number of atoms of N per one atom 1.800e-1 [43]

of C in protein

kN,Ps Number of atoms of N per one atom 0.000 [13]

of C in polysaccharide

continued on next page
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Table B.4 continued

Parameter Description Value

kN,Lp Number of atoms of N per one atom 0.000 [63, 56]

of C in lipid

kP,Pr Number of atoms of P per one atom 0.000 [43]

of C in protein

kP,Ps Number of atoms of P per one atom 0.000 [13]

of C in polysaccharide

kN,Lp Number of atoms of P per one atom 5.000e-2 [63, 56]

of C in lipid

kE,Pr Number of atoms of ATP per one atom 2.500

of C in protein

kE,Ps Number of atoms of ATP per one atom 1.000[1]

of C in polysaccharide

kE,Lp Number of atoms of ATP per one atom 0.500 [16]

of C in lipid

kE,Fr Number of atoms of ATP per one atom 6.000e-4

of Si in frustule

Im,Pr Building time for one molecule of protein 1.000

Im,Ps Building time for one molecule 1.000

of polysaccharide

Im,Lp Building time for one molecule of lipid 1.000

Im,Fr Building time for one molecule of frustule 1.000

Im,DA Building time for one molecule of DA 1.000

kPs,0 Maximum catabolic rate for polysaccharides 2.300e-10

kLp,0 Maximum catabolic rate for lipids 2.300e-9

continued on next page
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Table B.4 continued

Parameter Description Value

kPs,1 Catabolic constant 2.000e-1

kLp,1 Catabolic constant 2.000e-1

kPs,2 Catabolic constant 1.000e9

kLp,2 Catabolic constant 1.000e9

kPs,3 Catabolic constant 1.000e-10

kLp,3 Catabolic constant 1.000e-6

m0,P r Maximum number of protein molecules 1.800e-6

fixed per time

m0,P s Maximum number of polysaccharide 6.400e-7

molecules fixed per time

m0,Lp Maximum number of lipid molecules 3.500e-7

fixed per time

m0,F r Maximum number of frustule molecules 7.500e-6

fixed per time

m0,DA Maximum number of DA molecules 1.000e-10

fixed per time
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Table B.5: ANOVA table for 5-variable factorial design: Population data

Variable Sum Sq. d.f. Mean Sq. F p

CE 246.505 4 61.6262 4333.22 0

β 2.993 4 0.7483 52.62 0

Pmax 5.78 4 1.4449 101.6 0

T1 20.26 4 5.0651 356.15 0

kE,Pr 1.525 4 0.3813 26.81 0

CE with β 7.476 16 0.4672 32.85 0

CE with Pmax 12.023 16 0.7514 52.84 0

CE with T1 41.928 16 2.6205 184.26 0

CE with kE,Pr 1.164 16 0.0728 5.12 0

β with Pmax 1.188 16 0.0743 5.22 0

β with T1 0.32 16 0.02 1.4 0.1297

β with kE,Pr 0.07 16 0.0043 0.31 0.9962

Pmax with T1 0.5 16 0.0312 2.2 0.004

Pmax with kE,Pr 0.109 16 0.0068 0.48 0.9578

T1 with kE,Pr 3.757 16 0.2348 16.51 0

Error 41.869 2944 0.0142

Total 387.467 3124

Table B.6: Summary of F and p values for ANOVA tests for 5-variable factorial exper-
iment: Population data

Variable F p F p F p F p

CE 4333.22 0 352.44 0 1193.75 0

β 52.62 0 6.42 0 65.92 0 16.08 0

Pmax 101.6 0 12.4 0 102.01 0 31.63 0

T1 365.15 0 43.47 0 2998.65 0 560.25 0

kE,Pr 26.81 0 3.27 0.011 37.06 0 13.19 0

CE with β 32.85 0 18.93 0 14.56 0

CE with Pmax 52.84 0 19.28 0 28.28 0

CE with T1 184.26 0 8.55 0 74.98 0

CE with kE,Pr 5.12 0 6.99 0 5.01 0

β with Pmax 5.22 0 0.64 0.8557 45.24 0 1.66 0.0938

β with T1 1.40 0.1297 0.17 0.9999 4.5 0 3.79 0.0001

β with kE,Pr 0.31 0.9962 0.04 1 3.65 0 0.24 0.9882

Pmax with T1 2.2 0.004 0.27 0.9983 11.78 0 7.21 0

Pmax with kE,Pr 0.48 0.9578 .06 1 7.63 0 0.35 0.9583

T1 with kE,Pr 16.51 0 2.02 0.0096 20.91 0 6.87 0
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Table B.7: ANOVA table for 5-variable factorial experiment: DA data

Variable Sum Sq. d.f. Mean Sq. F p

CE 28.041 4 7.0103 162.49 0

β 6.775 4 1.6937 39.26 0

Pmax 10.916 4 2.729 63.25 0

T1 107.902 4 26.9755 625.26 0

kE,Pr 34.915 4 8.7288 202.32 0

CE with β 3.729 16 0.2331 5.4 0

CE with Pmax 8.35 16 0.5219 12.1 0

CE with T1 38.149 16 2.3843 55.27 0

CE with kE,Pr 7.363 16 0.4602 10.67 0

β with Pmax 5.526 16 0.3454 8.01 0

β with T1 25.76 16 1.61 37.32 0

β with kE,Pr 8.371 16 0.5232 12.13 0

Pmax with T1 45.385 16 2.8365 65.75 0

Pmax with kE,Pr 13.757 16 0.8598 19.93 0

T1 with kE,Pr 44.304 16 2.769 64.18 0

Error 127.013 2944 0.0431

Total 516.257 3124

Table B.8: ANOVA table for 5-variable factorial experiment: External Si data

Variable Sum Sq. d.f. Mean Sq. F p

CE 134695.5 4 33673.9 4296.38 0

β 2111.7 4 527.9 67.36 0

Pmax 4098 4 1024.5 130.71 0

T1 112117.1 4 28029.3 3576.2 0

kE,Pr 1288.1 4 322 41.09 0

CE with β 4491.2 16 280.7 35.81 0

CE with Pmax 8801.8 16 550.1 70.19 0

CE with T1 28687.6 16 1793 228.76 0

CE with kE,Pr 1048.1 16 65.5 8.36 0

β with Pmax 384.6 16 24 3.07 0

β with T1 346 16 21.6 2.76 0.0002

β with kE,Pr 77.5 16 4.8 0.62 0.8721

Pmax with T1 677.8 16 42.4 5.41 0

Pmax with kE,Pr 154.7 16 9.7 1.23 0.2331

T1 with kE,Pr 3023 16 188.9 24.11 0

Error 23074.3 2944 7.8

Total 325076.9 3124
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Table B.9: Summary of F and p values for ANOVA tests on 5-variable factorial experi-
ment: External Si data

Variable F p F p F p F p

CE 4296.38 0 93.08 0 966.8 0

β 67.36 0 7.92 0 45.57 0 18.91 0

Pmax 130.71 0 15.37 0 60.99 0 43.51 0

T1 3576.2 0 420.44 0 85051.67 0 3020.52 0

kE,Pr 41.09 0 4.83 0.0007 120.18 0 19.96 0

CE with β 35.81 0 7.22 0 15.49 0

CE with Pmax 70.19 0 9.48 0 37.22 0

CE with T1 228.76 0 38.81 0 85.59 0

CE with kE,Pr 8.36 0 13.58 0 9.26 0

β with Pmax 3.07 0 0.36 0.9903 8.97 0 1.41 0.1796

β with T1 2.76 0.0002 0.32 0.9947 2.6 0.0005 3.19 0.0008

β with kE,Pr 0.62 0.8721 0.07 1 0.55 0.9205 0.18 0.9963

Pmax with T1 5.41 0 0.64 0.8574 2.61 0.0005 8.13 0

Pmax with kE,Pr 1.23 0.2331 0.15 1 0.34 0.9933 0.15 0.9979

T1 with kE,Pr 24.11 0 2.83 0.0001 20.4 0 10.66 0
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Table B.10: ANOVA table for 8-variable factorial experiment: Population data

Variable Sum Sq. d.f. Mean Sq. F p

CE 95.723 2 47.8616 3068.82 0

β 3.756 2 1.8782 120.42 0

Pmax 3.685 2 1.8426 118.15 0

T1 21.02 2 10.5099 673.88 0

kE,Pr 0.008 2 0.0042 0.27 0.7618

M0,F r 67.255 2 33.6277 2156.16 0

CSii 1.389 2 0.6945 44.53 0

nSi 0.05 2 0.0252 1.62 0.1985

CE with β 4.543 4 1.1359 72.83 0

CE with Pmax 11.128 4 2.782 178.38 0

CE with T1 13.159 4 3.2897 210.93 0

CE with kE,Pr 0.402 4 0.1004 6.44 0

CE with M0,F r 98.862 4 24.7154 1584.72 0

CE with CSii 0.019 4 0.0047 0.3 0.8783

CE with nSi 0.111 4 0.0279 1.79 0.1285

β with Pmax 3.642 4 0.9105 58.38 0

β with T1 0.174 4 0.0435 2.79 0.0249

β with kE,Pr 0.121 4 0.0302 1.93 0.1017

β with M0,F r 9.402 4 2.3505 150.71 0

β with CSii 0.205 4 0.0512 3.29 0.0107

β with nSi 0.01 4 0.0025 0.16 0.9571

Pmax with T1 0.45 4 0.1124 7.21 0

Pmax with kE,Pr 0.842 4 0.2104 13.49 0

Pmax with M0,F r 1.392 4 0.3479 22.31 0

Pmax with CSii 0.551 4 0.1378 8.84 0

Pmax with nSi 0.024 4 0.0061 0.39 0.8166

T1 with kE,Pr 0.051 4 0.0126 0.81 0.5187

T1 with M0,F r 2.087 4 0.5217 33.45 0

T1 with CSii 3.816 4 0.9541 61.17 0

T1 with nSi 0.066 4 0.0164 1.05 0.3797

kE,Pr with M0,F r 0.02 4 0.0049 0.32 0.8671

kE,Pr with CSii 0.074 4 0.0184 1.18 0.3169

kE,Pr with nSi 0.001 4 0.0001 0.01 0.9999

M0,F r with CSii 0.982 4 0.2455 15.74 0

M0,F r with nSi 0.025 4 0.0062 0.4 0.8107

CSii with nSi 0.011 4 0.0029 0.18 0.9466

Error 100.299 6431 0.0156

Total 445.345 6559
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Table B.11: Summary of F and p values for ANOVA tests on 8-variable factorial exper-
iment: Population data

Variable F p F p F p F p

CE 3068.82 0 39.95 0 18.71 0

β 120.42 0 37.46 0 105.9 0 79.28 0

Pmax 118.15 0 36.75 0 254.17 0 196.97 0

T1 673.88 0 209.36 0 18495.63 0 21015.32 0

kE,Pr 0.27 0.7618 0.08 0.9188 49.69 0 73.38 0

M0,F r 2156.16 0 669.93 0 554.97 0 564.99 0

CSii 44.53 0 13.86 0 522.27 0 607.9 0

nSi 1.62 0.1985 0.5 0.6074 1.75 0.1731 0.11 0.8971

CE with β 72.83 0 4.83 0.0007 0.16 0.8537

CE with Pmax 178.38 0 5.97 0.0001 2.95 0.0523

CE with T1 210.93 0 35.72 0 39.74 0

CE with kE,Pr 6.44 0 3.25 0.0114 4.1 0.0167

CE with M0,F r 1584.72 0 25.24 0 7.43 0.0006

CE with CSii 0.3 0.8783 3.92 0.0035 7.38 0.0006

CE with nSi 1.79 0.1285 2.01 0.0899 0.33 0.7194

β with Pmax 58.38 0 18.14 0 347.36 0 333.77 0

β with T1 2.79 0.0249 0.87 0.4832 43.95 0 54.91 0

β with kE,Pr 1.93 0.1017 0.6 0.661 54.93 0 52.19 0

β with M0,F r 150.71 0 46.81 0 95.68 0 58.07 0

β with CSii 3.29 0.0107 1.03 0.3922 48.96 0 55.46 0

β with nSi 0.16 0.9571 0.05 0.9954 1.53 0.1899 0.18 0.9501

Pmax with T1 7.21 0 2.24 0.0621 125 0 119.42 0

Pmax with kE,Pr 13.49 0 4.18 0.0022 139.44 0 149.44 0

Pmax with M0,F r 22.31 0 6.92 0 115.06 0 100.43 0

Pmax with CSii 8.84 0 2.74 0.0272 100.41 0 95.74 0

Pmax with nSi 0.39 0.8166 0.12 0.9744 3.07 0.0156 0.93 0.4447

T1 with kE,Pr 0.81 0.5187 0.25 0.9075 45.24 0 56.9 0

T1 with M0,F r 33.45 0 10.39 0 455.94 0 627.01 0

T1 with CSii 61.17 0 19 0 709.52 0 564.72 0

T1 with nSi 1.05 0.3797 0.33 0.8593 1.07 0.3672 1.89 0.109

kE,Pr with M0,F r 0.32 0.8671 0.1 0.983 17.74 0 27.03 0

kE,Pr with CSii 1.18 0.3169 0.37 0.8299 22.21 0 28.41 0

kE,Pr with nSi 0.01 0.9999 0 1 1.67 0.1533 1.86 0.1143

M0,F r with CSii 15.74 0 4.88 0.006 182.27 0 228.01 0

M0,F r with nSi 0.4 0.8107 0.12 0.9736 0.14 0.9694 1.64 0.1622

CSii with nSi 0.18 0.9466 0.06 0.9936 1.67 0.1533 1.75 0.1358
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Table B.12: ANOVA table for 8-variable factorial experiment: DA data

Variable Sum Sq. d.f. Mean Sq. F p

CE 26.74 2 13.368 597.34 0

β 18.71 2 9.353 417.92 0

Pmax 14.46 2 7.23 323.07 0

T1 532.03 2 266.017 11887.01 0

kE,Pr 24.88 2 12.438 555.79 0

M0,F r 9.07 2 4.537 202.76 0

CSii 0.01 2 0.007 0.29 0.7476

nSi 0.03 2 0.016 0.73 0.4827

CE with β 0.32 4 0.08 3.58 0.0063

CE with Pmax 7.71 4 1.926 86.08 0

CE with T1 16.47 4 4.117 183.98 0

CE with kE,Pr 0.76 4 0.189 8.46 0

CE with M0,F r 18.48 4 4.62 206.46 0

CE with CSii 0.03 4 0.007 0.31 0.8686

CE with nSi 0.02 4 0.006 0.25 0.912

β with Pmax 5.09 4 1.273 56.88 0

β with T1 32.05 4 8.012 358.01 0

β with kE,Pr 4.5 4 1.125 50.28 0

β with M0,F r 3.79 4 0.948 42.37 0

β with CSii 0 4 0 0.02 0.9991

β with nSi 0 4 0.001 0.03 0.9986

Pmax with T1 102.04 4 25.51 1139.92 0

Pmax with kE,Pr 10.3 4 2.574 115.03 0

Pmax with M0,F r 5.76 4 1.44 64.35 0

Pmax with CSii 0.01 4 0.001 0.06 0.9942

Pmax with nSi 0.01 4 0.002 0.08 0.9896

T1 with kE,Pr 57.2 4 14.3 639.02 0

T1 with M0,F r 16.91 4 4.227 188.9 0

T1 with CSii 0.26 4 0.065 2.92 0.02

T1 with nSi 0.34 4 0.084 3.77 0.0045

kE,Pr with M0,F r 0.35 4 0.088 3.94 0.0034

kE,Pr with CSii 0.12 4 0.029 1.31 0.2649

kE,Pr with nSi 0 4 0.001 0.03 0.9984

M0,F r with CSii 0.01 4 0.004 0.17 0.9557

M0,F r with nSi 0.01 4 0.002 0.1 0.9839

CSii with nSi 0 4 0 0.01 0.9996

Error 143.92 6431 0.022

Total 1052.35 6559
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Table B.13: ANOVA table for 8-variable factorial experiment: External Silicon data

Variable Sum Sq. d.f. Mean Sq. F p

CE 46759.9 2 23380 3316.4 0

β 1172.3 2 586.2 83.15 0

Pmax 5298.7 2 2649.3 375.8 0

T1 77.1 2 38.5 5.46 0.0043

kE,Pr 322.9 2 161.5 22.9 0

M0,F r 25016.4 2 12508.2 1774.26 0

CSii 21.8 2 10.9 1.54 0.2138

nSi 2 2 1 0.14 0.8657

CE with β 2724.3 4 681.1 96.61 0

CE with Pmax 9075.4 4 2268.8 321.83 0

CE with T1 1986.1 4 496.5 70.43 0

CE with kE,Pr 366.7 4 91.7 13 0

CE with M0,F r 50587.6 4 12646.9 1793.94 0

CE with CSii 63.9 4 16 2.27 0.0596

CE with nSi 48.6 4 12.2 1.72 0.1415

β with Pmax 2426.9 4 606.7 86.06 0

β with T1 49.1 4 12.3 1.74 0.1375

β with kE,Pr 53.2 4 13.3 1.89 0.1097

β with M0,F r 4021.3 4 1005.3 142.6 0

β with CSii 1.5 4 0.4 0.05 0.9946

β with nSi 5.2 4 1.3 0.18 0.9474

Pmax with T1 376.1 4 94 13.34 0

Pmax with kE,Pr 72.5 4 18.1 2.57 0.0361

Pmax with M0,F r 3274.2 4 818.5 116.11 0

Pmax with CSii 6 4 1.5 0.21 0.9324

Pmax with nSi 14.5 4 3.6 0.51 0.725

T1 with kE,Pr 476.7 4 119.2 16.9 0

T1 with M0,F r 1032.3 4 258.1 36.61 0

T1 with CSii 29 4 7.3 1.03 0.3904

T1 with nSi 0.5 4 0.1 0.02 0.9995

kE,Pr with M0,F r 117.2 4 29.3 4.16 0.0023

kE,Pr with CSii 4.8 4 1.2 0.17 0.9532

kE,Pr with nSi 0.4 4 0.1 0.01 0.9996

M0,F r with CSii 45.9 4 11.5 1.63 0.1643

M0,F r with nSi 36 4 9 1.28 0.2768

CSii with nSi 0.9 4 0.2 0.03 0.998

Error 45337.3 6431 7

Total 200909.3 6559
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Table B.14: Summary of F and p values for ANOVA tests on 8-variable factorial exper-
iment: External Silicon data

Variable F p F p F p F p

CE 3316.4 0 362.25 0 430.84 0

β 83.15 0 24.16 0 254.96 0 2737.77 0

Pmax 375.8 0 109.12 0 600.52 0 4490.95 0

T1 5.46 0.0043 1.59 0.2048 7089.18 0 53965.19 0

kE,Pr 22.9 0 6.63 0.0013 356.29 0 2028.16 0

M0,F r 1774.26 0 514.77 0 291.05 0 112.39 0

CSii 1.54 0.2138 0.45 0.6361 33.3 0 98.94 0

nSi 0.14 0.8657 0.04 0.9591 278.86 0 1762.09 0

CE with β 96.61 0 9.66 0 2.89 0.0555

CE with Pmax 321.83 0 25.66 0 7.65 0.0005

CE with T1 70.43 0 15.82 0 246.46 0

CE with kE,Pr 13 0 24.61 0 275.85 0

CE with M0,F r 1793.94 0 233.66 0 3.23 0.0397

CE with CSii 2.27 0.0596 5.2 0.0004 2.9 0.055

CE with nSi 1.72 0.1415 3.3 0.0104 2.95 0.0525

β with Pmax 86.06 0 24.99 0 233.63 0 1894.32 0

β with T1 1.74 0.1375 0.5 0.7325 40.99 0 567.64 0

β with kE,Pr 1.89 0.1097 0.54 0.7045 19.02 0 104.61 0

β with M0,F r 142.6 0 41.36 0 3.49 0.0075 3.27 0.0111

β with CSii 0.05 0.9946 0.02 0.9995 0.19 0.9442 3.1 0.0147

β with nSi 0.18 0.9474 0.05 0.995 11.47 0 132.53 0

Pmax with T1 13.34 0 3.87 0.0039 113.5 0 745.66 0

Pmax with kE,Pr 2.57 0.0361 0.75 0.5603 12.94 0 125.66 0

Pmax with M0,F r 116.11 0 33.67 0 10.53 0 9.69 0

Pmax with CSii 0.21 0.9324 0.06 0.9935 2.54 0.0382 9.3 0

Pmax with nSi 0.51 0.725 0.15 0.9623 34.33 0 262.16 0

T1 with kE,Pr 16.9 0 4.91 0.0006 176.71 0 1057.45 0

T1 with M0,F r 36.61 0 10.62 0 2.8 0.0246 51.02 0

T1 with CSii 1.03 0.3904 0.3 0.88 17.48 0 47.36 0

T1 with nSi 0.02 0.9995 0 1 160.58 0 1041.44 0

kE,Pr with M0,F r 4.16 0.0023 1.21 0.3028 19.75 0 0.14 0.9694

kE,Pr with CSii 0.17 0.9532 0.05 0.9955 0.28 0.894 0.13 0.9706

kE,Pr with nSi 0.01 0.9996 0 1 9.97 0 63.17 0

M0,F r with CSii 1.63 0.1643 0.47 0.7585 1.44 0.2194 38.27 0

M0,F r with nSi 1.28 0.2768 0.37 0.8277 4.46 0.0013 80.01 0

CSii with nSi 0.03 0.998 0.01 0.9998 11.54 0 75.84 0



104

Table B.15: Comparison of model output to data from Experiment 1 in Pan et al. [59].
Model data is averaged for days 23 to 25. Error is absolute relative error.

Total DA Cellular DA External Si

Flow Model Data Percent Model Data Percent Model Data Percent
d−1 Error Error Error

0.2 48.6 50 2.8 0.607 0.53 16.7 36.8 29.5 24.7

0.3 20.4 27.8 26.6 0.290 0.27 7.4 51.9 46.0 12.7

0.4 8.89 11.1 19.9 0.146 0.17 14.1 66.7 62.3 6.6

0.5 3.58 5.56 35.6 0.076 0.8 5.0 80.2 79.1 1.4

0.6 0.909 2.78 67.0 0.025 0.06 58.3 97.8 95.6 2.3

Table B.16: Comparison of model output to data from Experiment 2 in Pan et al. [59].
Model data is averaged for days 28 to 30. Error is absolute relative error.

Total DA Cellular DA External Si

Flow Model Data Percent Model Data Percent Model Data Percent
d−1 Error Error Error

0.2 389 245 57.8 7.07 5.6 26.2 3.23 2.3 40.4

0.3 122 145 15.9 2.47 2.2 12.2 5.12 2.3 122

0.4 34.1 73 53.3 0.76 1.3 41.5 8.37 2.0 318
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Table B.17: Model Parameter values for Chapters 4 and 5. Only parameters whose
values are different than in Table B.4 are listed.

Parameter Description Ch 4 Ch 5

csi Proportionality constant for external Si 16.40e7 12.40e7

nSi,e Density of transport sites for Si uptake 2.115e3 4.815e3

λ0 Maximum increase in uptake efficiency 100.0 154.5
for Si

ρ Decrease in uptake efficiency per unit 0.7000 0.1800
external Si

S Rate constant 1.160e-10 4.560e-10

Pmax Maximum photosynthetic rate 8.000e-3 2.800e-1

β Photoinhibition index 4.800e-5 4.800e-5

CCi
Wait time for one molecule of C 2.000e-6 16.50e-6

CN,i Wait time for one molecule of N 2.000e-6 16.50e-6

CPi
Wait time for one molecule of P 2.000e-6 16.50e-6

CEi
Wait time for one molecule of ATP 2.000e-6 16.50e-6

CSii Wait time for one molecule of Si 2.000e-6 16.50e-6

m0,P r Maximum number of protein molecules 6.400e-7 6.400e-7
fixed per time

m0,P s Maximum number of polysaccharide 4.800e-6 6.800e-6
molecules fixed per time

m0,F r Maximum number of frustule molecules 7.300e-6 5.000e-6
fixed per time

m0,DA Maximum number of DA molecules 2.100e-12 9.200e-12
fixed per time

Table B.18: Summary of results for DA production for varying N and Si levels

Si N Da production

Low High High

Low Low Low

High High Low

High Low Low
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